作者: Peter N. Laver , Roger A. Powell , Kathleen A. Alexander
DOI: 10.1016/J.ECOINF.2015.02.001
关键词: Data mining 、 Computer science 、 Observational error 、 Test data 、 Experimental data 、 Metric (mathematics) 、 Dilution of precision 、 Telemetry 、 Global Positioning System 、 EGM96
摘要: Abstract Technological improvements in battery life and physical dimensions of Global Positioning System (GPS) telemetry have increased the number locations one can collect, but due to relatively unimproved GPS accuracy this also increases with unacceptable measurement error. We propose show an example a new method for screening data metric: estimated elevation error (EEE). EEE identifies xy -coordinate some cases better than do methods that use horizontal dilution precision (HDOP) or fix dimension (2-D 3-D). Our combines test model-averaging information-theoretic framework uses priori candidate models demonstrate using experimental collected on banded mongooses ( Mungos mungo ). One adapt any data.