Weighted empirical adaptive variance estimators for correlated data regression

作者: T. Lumley , P. Heagerty

DOI: 10.1111/1467-9868.00187

关键词: EstimatorRegression analysisEstimating equationsOne-way analysis of varianceJackknife resamplingGeneralized linear modelVariance (accounting)StatisticsVariance functionMathematicsEconometrics

摘要: Estimating equations based on marginal generalized linear models are useful for regression modelling of correlated data, but inference and testing require reliable estimates standard errors. We introduce a class variance estimators the weighted empirical estimating functions show that an adaptive choice weights allows estimation both asymptotically by simulation in finite samples. Connections with previous bootstrap jackknife methods explored. The effect is illustrated data health effects air pollution King County, Washington.

参考文章(25)
V. P. Godambe, C. C. Heyde, Quasi-likelihood and Optimal Estimation International Statistical Review. ,vol. 55, pp. 386- 399 ,(2010) , 10.1007/978-1-4419-5823-5_49
Michael Sherman, Variance Estimation for Statistics Computed from Spatial Lattice Data Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 58, pp. 509- 523 ,(1996) , 10.1111/J.2517-6161.1996.TB02097.X
Peter Hall, Bingyi Jing, On Sample Reuse Methods for Dependent Data Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 58, pp. 727- 737 ,(1996) , 10.1111/J.2517-6161.1996.TB02111.X
K Katsouyanni, G Touloumi, C Spix, J Schwartz, F Balducci, S Medina, G Rossi, B Wojtyniak, J Sunyer, L Bacharova, J P Schouten, A Ponka, H R Anderson, Short term effects of ambient sulphur dioxide and particulate matter on mortality in 12 European cities: Results from time series data from the APHEA project BMJ. ,vol. 314, pp. 1658- 1663 ,(1997) , 10.1136/BMJ.314.7095.1658
Halbert White, Ian Domowitz, Nonlinear Regression with Dependent Observations Econometrica. ,vol. 52, pp. 143- 161 ,(1984) , 10.2307/1911465
Yutaka Yasui, Subhash Lele, A Regression Method for Spatial Disease Rates: An Estimating Function Approach Journal of the American Statistical Association. ,vol. 92, pp. 21- 32 ,(1997) , 10.1080/01621459.1997.10473599
Michael Sherman, Subseries Methods in Regression Journal of the American Statistical Association. ,vol. 92, pp. 1041- 1048 ,(1997) , 10.1080/01621459.1997.10474060
C. A. GLASBEY, Standard errors resilient to error variance misspecification Biometrika. ,vol. 75, pp. 201- 206 ,(1988) , 10.1093/BIOMET/75.2.201
L. Fahrmeir, L. Pritscher, Regression analysis of forest damage by marginal models for correlated ordinal responses Environmental and Ecological Statistics. ,vol. 3, pp. 257- 268 ,(1996) , 10.1007/BF00453014