Accounting for Errors from Predicting Exposures in Environmental Epidemiology and Environmental Statistics

作者: Adam A Szpiro , Thomas Lumley , Lianne Sheppard

DOI:

关键词:

摘要: In environmental epidemiology and related problems in statistics, it is typically not practical to directly measure the exposure for each subject. Environmental monitoring employed with a statistical model assign exposures individuals. The result form of misspecification that can complicated errors health effect estimates if naively treated as known. error neither “classical” nor “Berkson”, so standard regression calibration methods do apply. We decompose estimation into three components. First, are too small field correlated, independent variability estimating parameters. Second, because they account Third, there bias from using approximate parameters place unobserved true ones. outline three-stage correction procedure separately these errors. A key insight we second part (sampling exposure) by averaging over simulations posterior surface informative outcome. This amounts samples parameters, call “parameter simulation”. One implication preferable use parametric correlation (e.g., kriging) rather than semi-parametric approximation. While latter approach has been found be effective mean fields, does provide needed decomposition non-informative illustrate properties our corrected estimators simulation study present an example statistics. focus this paper on linear models uncorrelated outcomes, but extensions generalized correlated outcomes possible.

参考文章(18)
Alan T. Herlihy, John L. Stoddard, Colleen Burch Johnson, The Relationship between Stream Chemistry and Watershed Land Cover Data in the Mid-Atlantic Region, U.S. Water Air and Soil Pollution. ,vol. 105, pp. 377- 386 ,(1998) , 10.1007/978-94-017-0906-4_34
Finn Lindgren, Johan Lindström, A Gaussian Markov random field model for total yearly precipitation over the African Sahel Preprints in Mathematical Sciences1999-01-01+01:00; 2008:8 (2008). ,(2008)
S L Zeger, D Thomas, F Dominici, J M Samet, J Schwartz, D Dockery, A Cohen, Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environmental Health Perspectives. ,vol. 108, pp. 419- 426 ,(2000) , 10.1289/EHP.00108419
Nino Künzli, Michael Jerrett, Wendy J. Mack, Bernardo Beckerman, Laurie LaBree, Frank Gilliland, Duncan Thomas, John Peters, Howard N. Hodis, Ambient air pollution and atherosclerosis in Los Angeles. Environmental Health Perspectives. ,vol. 113, pp. 201- 206 ,(2004) , 10.1289/EHP.7523
Michael Brauer, Gerard Hoek, Patricia van Vliet, Kees Meliefste, Paul Fischer, Ulrike Gehring, Joachim Heinrich, Josef Cyrys, Tom Bellander, Marie Lewne, Bert Brunekreef, Estimating long-term average particulate air pollution concentrations: application of traffic indicators and geographic information systems. Epidemiology. ,vol. 14, pp. 228- 239 ,(2003) , 10.1097/01.EDE.0000041910.49046.9B
Alexandros Gryparis, Brent A. Coull, Joel Schwartz, Helen H. Suh, Semiparametric latent variable regression models for spatiotemporal modelling of mobile source particles in the greater Boston area Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 56, pp. 183- 209 ,(2007) , 10.1111/J.1467-9876.2007.00573.X
Alan E. Gelfand, Bradley P. Carlin, Sudipto Banerjee, Hierarchical Modeling and Analysis for Spatial Data ,(2003)
S. O. Los, G. P. Weedon, P. R. J. North, J. D. Kaduk, C. M. Taylor, P. M. Cox, An observation-based estimate of the strength of rainfall-vegetation interactions in the Sahel Geophysical Research Letters. ,vol. 33, ,(2006) , 10.1029/2006GL027065
T. Lumley, P. Heagerty, Weighted empirical adaptive variance estimators for correlated data regression Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 61, pp. 459- 477 ,(1999) , 10.1111/1467-9868.00187
L. Madsen, D. Ruppert, N. S. Altman, Regression with spatially misaligned data Environmetrics. ,vol. 19, pp. 453- 467 ,(2008) , 10.1002/ENV.888