Czert - Czech BERT-like Model for Language Representation.

作者: Miloslav Konopík , Jan Pasek , Ondrej Prazák , Jakub Sido , Pavel Pribán

DOI:

关键词: Process (engineering)PublicationCzechNatural language processingComputer scienceResearch communityArtificial intelligenceLanguage representation

摘要: This paper describes the training process of the first Czech monolingual language representation models based on BERT and ALBERT architectures. We pre-train our models …

参考文章(33)
Michal Hrala, Pavel Král, Evaluation of the Document Classification Approaches computer recognition systems. pp. 877- 885 ,(2013) , 10.1007/978-3-319-00969-8_86
Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization arXiv: Learning. ,(2014)
Magda Ševčíková, Zdeněk Žabokrtský, Oldřich Krůza, Named entities in Czech: annotating data and developing NE tagger text speech and dialogue. pp. 188- 195 ,(2007) , 10.1007/978-3-540-74628-7_26
Ilya Sutskever, Tomas Mikolov, Greg S Corrado, Kai Chen, Jeff Dean, Distributed Representations of Words and Phrases and their Compositionality neural information processing systems. ,vol. 26, pp. 3111- 3119 ,(2013)
Hai Zhao, Wenliang Chen, Chunyu Kit, Guodong Zhou, Multilingual Dependency Learning: A Huge Feature Engineering Method to Semantic Dependency Parsing conference on computational natural language learning. pp. 55- 60 ,(2009) , 10.3115/1596409.1596418
Jeffrey Pennington, Richard Socher, Christopher Manning, Glove: Global Vectors for Word Representation empirical methods in natural language processing. pp. 1532- 1543 ,(2014) , 10.3115/V1/D14-1162
Josef Steinberger, Ivan Habernal, Tomáš Ptáċek, Sentiment Analysis in Czech Social Media Using Supervised Machine Learning north american chapter of the association for computational linguistics. pp. 65- 74 ,(2013)
Pavel Král, Ladislav Lenc, Deep Neural Networks for Czech Multi-label Document Classification. conference on intelligent text processing and computational linguistics. pp. 460- 471 ,(2016) , 10.1007/978-3-319-75487-1_36
Mike Del Balso, Alexander Sergeev, Horovod: fast and easy distributed deep learning in TensorFlow arXiv: Learning. ,(2018)