Classification of covariance matrices using a Riemannian-based kernel for BCI applications

作者: Christian Jutten , Alexandre Barachant , Stéphane Bonnet , Marco Congedo

DOI: 10.1016/J.NEUCOM.2012.12.039

关键词: Kernel (statistics)Radial basis function kernelFeature (machine learning)Support vector machineMathematicsPattern recognitionCovarianceKernel methodCovariance matrixRiemannian geometryArtificial intelligence

摘要: The use of spatial covariance matrix as a feature is investigated for motor imagery EEG-based classification in brain-computer interface applications. A new kernel derived by establishing connection with the Riemannian geometry symmetric positive definite matrices. Different kernels are tested, combination support vector machines, on past BCI competition dataset. We demonstrate that this approach outperforms significantly state art results, effectively replacing traditional filtering approach.

参考文章(19)
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
Alexandre Barachant, Stéphane Bonnet, Marco Congedo, Christian Jutten, Riemannian geometry applied to BCI classification international conference on latent variable analysis and signal separation. ,vol. 6365, pp. 629- 636 ,(2010) , 10.1007/978-3-642-15995-4_78
Alexandre Barachant, Stphane Bon, Marco Congedo, Christian Jutten, Common Spatial Pattern revisited by Riemannian geometry multimedia signal processing. pp. 472- 476 ,(2010) , 10.1109/MMSP.2010.5662067
Matthias Krauledat, Michael Tangermann, Benjamin Blankertz, Klaus-Robert Müller, Towards Zero Training for Brain-Computer Interfacing PLOS ONE. ,vol. 3, ,(2008) , 10.1371/JOURNAL.PONE.0002967
Mehrtash T Harandi, Conrad Sanderson, Arnold Wiliem, Brian C Lovell, None, Kernel analysis over Riemannian manifolds for visual recognition of actions, pedestrians and textures workshop on applications of computer vision. pp. 433- 439 ,(2012) , 10.1109/WACV.2012.6163005
Maher Moakher, A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices SIAM Journal on Matrix Analysis and Applications. ,vol. 26, pp. 735- 747 ,(2005) , 10.1137/S0895479803436937
Olivier Ledoit, Michael Wolf, A well-conditioned estimator for large-dimensional covariance matrices Journal of Multivariate Analysis. ,vol. 88, pp. 365- 411 ,(2004) , 10.1016/S0047-259X(03)00096-4
F Lotte, M Congedo, A Lécuyer, F Lamarche, B Arnaldi, A review of classification algorithms for EEG-based brain–computer interfaces Journal of Neural Engineering. ,vol. 4, pp. 24- ,(2007) , 10.1088/1741-2560/4/2/R01
A. Barachant, S. Bonnet, M. Congedo, C. Jutten, Multiclass Brain–Computer Interface Classification by Riemannian Geometry IEEE Transactions on Biomedical Engineering. ,vol. 59, pp. 920- 928 ,(2012) , 10.1109/TBME.2011.2172210