2009 Special Issue: A linear feature space for simultaneous learning of spatio-spectral filters in BCI

作者: J. Farquhar

DOI: 10.1016/J.NEUNET.2009.06.035

关键词:

摘要: It is shown how two of the most common types feature mapping used for classification single trial Electroencephalography (EEG), i.e. spatial and frequency filtering, can be equivalently performed as linear operations in space frequency-specific detector covariance tensors. Thus by first data to this space, a simple classifier directly learn optimal + filters. Significantly, if classifier's loss function convex, learning these filters convex minimisation problem. also pre-process such that resulting decision robust biases inherent EEG data. Further, based upon ideas from Max Margin Matrix Factorisation, it trace norm select solutions which have low rank. Low rank are preferred they reflect prior information about signals we expect see, classifiable contained only few spatio/spectral pairs. They easier interpret. This feature-space transformation compared with Common-Spatial-Patterns on simulated real Imagined Movement Brain Computer Interface (BCI) give state-of-the-art performance.

参考文章(29)
Erkki Oja, Aapo Hyvarinen, Juha Karhunen, Independent Component Analysis ,(2001)
Bernhard Schölkopf, Alexander J. Smola, Learning with Kernels The MIT Press. pp. 626- ,(2018) , 10.7551/MITPRESS/4175.001.0001
Müller-Putz, B Schölkopf, J Farquhar, R. Scherer, TN Lal, NJ Hill, G. Pfurtscheller, C. Brunner, A. Schlögl, R. Leeb, S. Wriessnegger, Regularised CSP for Sensor Selection in BCI 3rd International Brain-Computer Interface Workshop and Training Course 2006. pp. 14- 15 ,(2006)
Richard A. Harshman, Margaret E. Lundy, PARAFAC: parallel factor analysis Computational Statistics & Data Analysis. ,vol. 18, pp. 39- 72 ,(1994) , 10.1016/0167-9473(94)90132-5
S.P van den Broek, F Reinders, M Donderwinkel, M.J Peters, Volume conduction effects in EEG and MEG Electroencephalography and Clinical Neurophysiology. ,vol. 106, pp. 522- 534 ,(1998) , 10.1016/S0013-4694(97)00147-8
Terence W. Picton, M. Sasha John, Andrew Dimitrijevic, David Purcell, Human auditory steady-state responses. International Journal of Audiology. ,vol. 42, pp. 177- 219 ,(2003) , 10.3109/14992020309101316
Jasson D. M. Rennie, Nathan Srebro, Fast maximum margin matrix factorization for collaborative prediction Proceedings of the 22nd international conference on Machine learning - ICML '05. pp. 713- 719 ,(2005) , 10.1145/1102351.1102441
Maarten De Vos, Lieven De Lathauwer, Bart Vanrumste, Sabine Van Huffel, W. Van Paesschen, Canonical decomposition of ictal scalp EEG and accurate source localisation: principles and simulation study Computational Intelligence and Neuroscience. ,vol. 2007, pp. 58253- 58253 ,(2007) , 10.1155/2007/58253
Z.J. Koles, The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG Electroencephalography and Clinical Neurophysiology. ,vol. 79, pp. 440- 447 ,(1991) , 10.1016/0013-4694(91)90163-X
Ryota Tomioka, Kazuyuki Aihara, Classifying matrices with a spectral regularization international conference on machine learning. pp. 895- 902 ,(2007) , 10.1145/1273496.1273609