Convergence rate of an SMI canceler in nonstationary noise

作者: K. Gerlach

DOI: 10.1109/7.272281

关键词: Electronic engineeringRate of convergenceProbability distributionSample matrix inversionNoise powerCovariance matrixActive noise controlControl theoryNoise reductionMathematicsGaussian noise

摘要: Convergence results for the sample matrix inversion (SMI) canceler algorithm in nonstationary noise are presented. Exact given convergence rate of average output power residue normalized to quiescent a two-input (one auxiliary), and lower upper bounds derived cancelers with two or more inputs under assumption that there is no internal noise. These function number independent samples processed per channel (main auxiliary input channels, external environment. The environment modeled as single interfering source conditionally Gaussian, level specified at each sampling time instant. Furthermore, this model generalized sense joint probability distribution defined levels over processing batch. This leads capability modeling evaluating SMI variety interference scenarios. >

参考文章(6)
I.S. Reed, J.D. Mallett, L.E. Brennan, Rapid Convergence Rate in Adaptive Arrays IEEE Transactions on Aerospace and Electronic Systems. ,vol. 10, pp. 853- 863 ,(1974) , 10.1109/TAES.1974.307893
K. Gerlach, Fast orthogonalization networks IEEE Transactions on Antennas and Propagation. ,vol. 34, pp. 458- 462 ,(1986) , 10.1109/TAP.1986.1143828
B. Friedlander, Lattice filters for adaptive processing Proceedings of the IEEE. ,vol. 70, pp. 829- 867 ,(1982) , 10.1109/PROC.1982.12407
M. Aftab Alam, Orthonormal lattice filter—a multistage multichannel estimation technique Geophysics. ,vol. 43, pp. 1368- 1383 ,(1978) , 10.1190/1.1440901
K. Gerlach, F.F. Kretschmer, Convergence properties of Gram-Schmidt and SMI adaptive algorithms. II IEEE Transactions on Aerospace and Electronic Systems. ,vol. 27, pp. 83- 91 ,(1990) , 10.1109/7.68150
K. Gerlach, F.F. Kretschmer, Reciprocal radar waveforms IEEE Transactions on Aerospace and Electronic Systems. ,vol. 27, pp. 646- 654 ,(1991) , 10.1109/7.85038