Statistical normalization of spherically invariant non-Gaussian clutter

作者: T.J. Barnard , F. Khan

DOI: 10.1109/JOE.2004.828204

关键词:

摘要: Conventional detection in active sonar involves comparing the normalized matched filter output power to a fixed preset threshold. Threshold crossings from contacts of interest are labeled as detections and those undesired clutter echoes false alarms. To maintain constant false-alarm rate (CFAR) presence strong transient clutter, system can either increase threshold or apply some function that suppresses this background down an acceptable level. The latter approach leads more consistent on display, which enables operator-assisted detection. Background suppression should not come at expense contact detection; maximize probability (PD) for given alarm (PFA), likelihood ratio test (LRT) is used. However, LRT does address display issues, since achieves desired PFA varies with input distribution. Ideally, monotonically transformed using "statistical normalizer" (SN) returns CFAR without degrading optimized PD. Within radar community, proposed tuned K-distributed spherically invariant random vector (SIRV) model. model lend itself SN, closed-form expression density exist. In contrast, SIRV model, Pareto distributed power, SN readily derived. This combined Pareto-LRT/SN detector nearly matches PD performance maintains purposes.

参考文章(20)
Kevin J. Sangston, Karl Gerlach, Results on the Detection of Signals in Spherically Invariant Random Noise Defense Technical Information Center. ,(1989) , 10.21236/ADA214933
M. Rangaswamy, J.H. Michels, Adaptive signal processing in non-Gaussian noise backgrounds ieee workshop on statistical signal and array processing. pp. 53- 56 ,(1998) , 10.1109/SSAP.1998.739332
E. Conte, M. Longo, M. Lops, Modelling and simulation of non-Rayleigh radar clutter IEE Proceedings F Radar and Signal Processing. ,vol. 138, pp. 121- 130 ,(1991) , 10.1049/IP-F-2.1991.0018
K. Gerlach, Convergence rate of an SMI canceler in nonstationary noise IEEE Transactions on Aerospace and Electronic Systems. ,vol. 30, pp. 599- 604 ,(1994) , 10.1109/7.272281
Enrique Castillo, Ali S. Hadi, Fitting the Generalized Pareto Distribution to Data Journal of the American Statistical Association. ,vol. 92, pp. 1609- 1620 ,(1997) , 10.1080/01621459.1997.10473683
M. Di Bisceglie, C. Galdi, H. D. Griffiths, Statistical scattering model for high-resolution sonar images : characterisation and parameter estimation IEE Proceedings - Radar, Sonar and Navigation. ,vol. 146, pp. 264- 272 ,(1999) , 10.1049/IP-RSN:19990711
M. Longo, E. Conte, Characterisation of radar clutter as a spherically invariant random process IEE Proceedings F Communications, Radar and Signal Processing. ,vol. 134, pp. 191- 197 ,(1987) , 10.1049/IP-F-1:19870035
E. Conte, A. De Maio, G. Ricci, Adaptive CFAR detection in compound-Gaussian clutter with circulant covariance matrix IEEE Signal Processing Letters. ,vol. 7, pp. 63- 65 ,(2000) , 10.1109/97.823527
K.J. Sangston, K.R. Gerlach, Coherent detection of radar targets in a non-gaussian background IEEE Transactions on Aerospace and Electronic Systems. ,vol. 30, pp. 330- 340 ,(1994) , 10.1109/7.272258
AYDIN ÖZTÜRK, Computer generation of correlated non-Gaussian radar clutter IEEE Transactions on Aerospace and Electronic Systems. ,vol. 31, pp. 106- 116 ,(1995) , 10.1109/7.366297