Stability of Dissipation Elements: A Case Study in Combustion

作者: A. Gyulassy , P.T. Bremer , R. Grout , H. Kolla , J. Chen

DOI: 10.1111/CGF.12361

关键词: Mathematical analysisDissipationGeometryPerturbation (astronomy)Streamlines, streaklines, and pathlinesTurbulenceBalanced flowMathematicsScalar fieldVisualizationCombinatorial topology

摘要: … flow, such as turbulence length scales and zonal partitioning. … of streamlines in the gradient flow field of a scalar function f : … We present two examples from combustion science that …

参考文章(35)
A. Cayley, XL. On contour and slope lines Philosophical Magazine Series 1. ,vol. 18, pp. 264- 268 ,(1859) , 10.1080/14786445908642760
Tino Weinkauf, Jan Reininghaus, Ingrid Hotz, David Günther, Hans Peter Seidel, Combinatorial Gradient Fields for 2D Images with Empirically Convergent Separatrices arXiv: Computer Vision and Pattern Recognition. ,(2012)
Stephen Smale, Generalized Poincare's Conjecture in Dimensions Greater Than Four The Annals of Mathematics. ,vol. 74, pp. 391- 406 ,(1961) , 10.2307/1970239
Attila Gyulassy, Mark Duchaineau, Vijay Natarajan, Valerio Pascucci, Eduardo Bringa, Andrew Higginbotham, Bernd Hamann, Topologically Clean Distance Fields IEEE Transactions on Visualization and Computer Graphics. ,vol. 13, pp. 1432- 1439 ,(2007) , 10.1109/TVCG.2007.70603
A. Gyulassy, N. Kotava, M. Kim, C. D. Hansen, H. Hagen, V. Pascucci, Direct Feature Visualization Using Morse-Smale Complexes IEEE Transactions on Visualization and Computer Graphics. ,vol. 18, pp. 1549- 1562 ,(2012) , 10.1109/TVCG.2011.272
LIPO WANG, NORBERT PETERS, Length-scale distribution functions and conditional means for various fields in turbulence Journal of Fluid Mechanics. ,vol. 608, pp. 113- 138 ,(2008) , 10.1017/S0022112008002139
A. Gyulassy, P. Bremer, V. Pascucci, Computing Morse-Smale Complexes with Accurate Geometry IEEE Transactions on Visualization and Computer Graphics. ,vol. 18, pp. 2014- 2022 ,(2012) , 10.1109/TVCG.2012.209
Herbert Edelsbrunner, Ernst Peter Mücke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms ACM Transactions on Graphics. ,vol. 9, pp. 66- 104 ,(1990) , 10.1145/77635.77639
Stephen Smale, On Gradient Dynamical Systems The Annals of Mathematics. ,vol. 74, pp. 199- ,(1961) , 10.2307/1970311