Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes.

作者: Nejat Duzgunes , Robert M. Straubinger , Patricia A. Baldwin , Daniel S. Friend , Demetrios Papahadjopoulos

DOI: 10.1021/BI00334A004

关键词: PhosphatidylserinePhosphatidylethanolaminePhosphatidylcholineLiposomeSynthetic membraneLipid bilayer fusionChromatographyChemistryVesicleOleic acid

摘要: Liposomes composed of oleic acid and phosphatidylethanolamine (3:7 mole ratio) aggregate, become destabilized, fuse below pH 6.5 in 150 mM NaCl. Fusion is monitored by (i) the intermixing internal aqueous contents liposomes, utilizing quenching aminonaphthalene-3,6,8-trisulfonic (ANTS) N,N'-p-xylylenebis(pyridinium bromide) (DPX) encapsulated two separate populations vesicles, (ii) a resonance energy transfer assay for dilution fluorescent phospholipids from labeled to unlabeled (iii) irreversible changes turbidity, (iv) quick-freezing freeze-fracture electron microscopy. Destabilization followed fluorescence increase caused leakage coencapsulated ANTS/DPX or calcein. Ca2+ Mg2+ also induce fusion these vesicles at 3 4 mM, respectively. The threshold higher presence low (subfusogenic) concentrations divalent cations. Vesicles phosphatidylserine/phosphatidylethanolamine acid/phosphatidylcholine do not destabilize, range 7-4, indicating that phosphatidylserine phosphatidylcholine cannot be substituted phosphatidylethanolamine, respectively, proton-induced membrane fusion. Freeze-fracture replicas acid/phosphatidylethanolamine liposomes frozen within 1 s stimulation with 5.3 display larger undergoing fusion, ridges areas bilayer continuity between them. construction pH-sensitive useful as model studying molecular requirements biological systems cytoplasmic delivery macromolecules.

参考文章(63)
Christian De Duve, Thierry De Barsy, Brian Poole, Andre´ Trouet, Paul Tulkens, Fran¸ois Van Hoof, Commentary. Lysosomotropic agents. Biochemical Pharmacology. ,vol. 23, pp. 2495- 2531 ,(1974) , 10.1016/0006-2952(74)90174-9
R F Irvine, How is the level of free arachidonic acid controlled in mammalian cells Biochemical Journal. ,vol. 204, pp. 3- 16 ,(1982) , 10.1042/BJ2040003
N. Fuller, M. Mcalister, R.P. Rand, L.J. Lis, V.A. Parsegian, Interactions between neutral phospholipid bilayer membranes. Biophysical Journal. ,vol. 37, pp. 657- 665 ,(1982) , 10.1016/S0006-3495(21)00385-4
Grant R. Bartlett, Phosphorus Assay in Column Chromatography Journal of Biological Chemistry. ,vol. 234, pp. 466- 468 ,(1959) , 10.1016/S0021-9258(18)70226-3
Helmut HAUSER, Arthur DARKE, Michael C. PHILLIPS, Ion‐Binding to Phospholipids FEBS Journal. ,vol. 62, pp. 335- 344 ,(1976) , 10.1111/J.1432-1033.1976.TB10165.X
R Blumenthal, M Henkart, C J Steer, Clathrin-induced pH-dependent fusion of phosphatidylcholine vesicles. Journal of Biological Chemistry. ,vol. 258, pp. 3409- 3415 ,(1983) , 10.1016/S0021-9258(18)32876-X
J. White, A. Helenius, pH-dependent fusion between the Semliki Forest virus membrane and liposomes Proceedings of the National Academy of Sciences of the United States of America. ,vol. 77, pp. 3273- 3277 ,(1980) , 10.1073/PNAS.77.6.3273
Harma Ellens, Joe Bentz, Francis C. Szoka, pH-Induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact Biochemistry. ,vol. 23, pp. 1532- 1538 ,(1984) , 10.1021/BI00302A029
Tsutomu Seimiya, Shinpei Ohki, Ionic structure of phospholipid membranes, and binding of calcium ions Biochimica et Biophysica Acta (BBA) - Biomembranes. ,vol. 298, pp. 546- 561 ,(1973) , 10.1016/0005-2736(73)90073-4
J Brier, M Fechheimer, J Swanson, D L Taylor, Abundance, relative gelation activity, and distribution of the 95,000-dalton actin-binding protein from Dictyostelium discoideum. Journal of Cell Biology. ,vol. 97, pp. 178- 185 ,(1983) , 10.1083/JCB.97.1.178