Motivic invariants of quivers via dimensional reduction

作者: Andrew Morrison

DOI: 10.1007/S00029-011-0081-Z

关键词: MathematicsAlgebraLinear factorDimensional reductionSuperpotentialQuiverPure mathematicsIntegration by reduction formulae

摘要: We provide a reduction formula for the motivic Donaldson–Thomas invariants associated with quiver superpotential. The method is valid provided superpotential has linear factor, it allows us to compute virtual motives in terms of ordinary classes simpler varieties. outline an application, giving explicit formulas orbifolds $${[\mathbb{C} \times \mathbb{C}^2/\mathbb{Z}_n]}$$ .

参考文章(20)
Jan Denef, François Loeser, Geometry on Arc Spaces of Algebraic Varieties arXiv: Algebraic Geometry. ,vol. 1, pp. 327- 348 ,(2001) , 10.1007/978-3-0348-8268-2_19
Victor Ginzburg, Calabi-Yau algebras arXiv: Algebraic Geometry. ,(2006)
B. Toen, Grothendieck rings of Artin n-stacks arXiv: Algebraic Geometry. ,(2005)
Andrew Morrison, Kentaro Nagao, Motivic Donaldson-Thomas invariants of toric small crepant resolutions arXiv: Algebraic Geometry. ,(2011) , 10.2140/ANT.2015.9.767
R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations Journal of Differential Geometry. ,vol. 54, pp. 367- 438 ,(2000) , 10.4310/JDG/1214341649
Kai Behrend, Donaldson-Thomas invariants via microlocal geometry arXiv: Algebraic Geometry. ,(2005)
Tom Bridgeland, An introduction to motivic Hall algebras arXiv: Algebraic Geometry. ,(2010)
Andrew Kresch, Cycle groups for Artin stacks Inventiones Mathematicae. ,vol. 138, pp. 495- 536 ,(1999) , 10.1007/S002220050351
Kai Behrend, Jim Bryan, Balázs Szendrői, Motivic degree zero Donaldson–Thomas invariants Inventiones mathematicae. ,vol. 192, pp. 111- 160 ,(2013) , 10.1007/S00222-012-0408-1
Andrew Morrison, Sergey Mozgovoy, Kentaro Nagao, Balázs Szendrői, Motivic Donaldson-Thomas invariants of the conifold and the refined topological vertex Advances in Mathematics. ,vol. 230, pp. 2065- 2093 ,(2012) , 10.1016/J.AIM.2012.03.030