An introduction to motivic Hall algebras

作者: Tom Bridgeland

DOI:

关键词: MathematicsCoherent sheafVariety (universal algebra)AlgebraTorusHall algebraSymplectic geometrySubalgebraRing (mathematics)

摘要: We give an introduction to Joyce's construction of the motivic Hall algebra coherent sheaves on a variety M. When M is Calabi-Yau threefold we define semi-classical integration map from Poisson subalgebra this ring functions symplectic torus. This material will be used in arxiv:1002.4374 prove some basic properties Donaldson-Thomas curve-counting invariants threefolds.

参考文章(10)
D. Joyce, MOTIVIC INVARIANTS OF ARTIN STACKS AND ‘STACK FUNCTIONS’ Quarterly Journal of Mathematics. ,vol. 58, pp. 345- 392 ,(2007) , 10.1093/QMATH/HAM019
Andrew Kresch, Cycle groups for Artin stacks Inventiones Mathematicae. ,vol. 138, pp. 495- 536 ,(1999) , 10.1007/S002220050351
R. D. MacPherson, Chern Classes for Singular Algebraic Varieties Annals of Mathematics. ,vol. 100, pp. 423- ,(1974) , 10.2307/1971080
Franziska Bittner, The universal Euler characteristic for varieties of characteristic zero Compositio Mathematica. ,vol. 140, pp. 1011- 1032 ,(2004) , 10.1112/S0010437X03000617
DOMINIC JOYCE, Constructible functions on Artin stacks Journal of The London Mathematical Society-second Series. ,vol. 74, pp. 583- 606 ,(2006) , 10.1112/S0024610706023180
Maxim Kontsevich, Yan Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations arXiv: Algebraic Geometry. ,(2008)
Eduard Looijenga, Motivic measures ,(2000)
Markus Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli Inventiones Mathematicae. ,vol. 152, pp. 349- 368 ,(2003) , 10.1007/S00222-002-0273-4