On cluster theory and quantum dilogarithm identities

作者: Bernhard Keller

DOI: 10.4171/101

关键词:

摘要: These are expanded notes from three survey lectures given at the 14th International Conference on Representations of Algebras (ICRA XIV) held in Tokyo August 2010. We first study identities between products quantum dilogarithm series associated with Dynkin quivers following Reineke. then examine similar for potential and link them to Fomin-Zelevinsky's theory cluster algebras. Here we mainly follow ideas due Bridgeland, Fock-Goncharov, Kontsevich-Soibelman Nagao.

参考文章(35)
Peter Gabriel, Andrei V. Roiter, Representations of Finite-Dimensional Algebras ,(1992)
Victor Ginzburg, Calabi-Yau algebras arXiv: Algebraic Geometry. ,(2006)
Claus Michael Ringel, Tame Algebras and Integral Quadratic Forms ,(1984)
Vladimir V. Fock, Alexander B. Goncharov, Cluster ensembles, quantization and the dilogarithm Annales scientifiques de l'École normale supérieure. ,vol. 42, pp. 865- 930 ,(2009) , 10.24033/ASENS.2112
Olivier Shiffmann, LECTURES ON HALL ALGEBRAS arXiv: Representation Theory. pp. 130- ,(2008)
Claire Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential Annales de l'Institut Fourier. ,vol. 59, pp. 2525- 2590 ,(2009) , 10.5802/AIF.2499
Tomoki Nakanishi, Periodicities in cluster algebras and dilogarithm identities arXiv: Quantum Algebra. pp. 407- 443 ,(2011) , 10.4171/101
Sergey Fomin, Andrei Zelevinsky, Cluster algebras I: Foundations Journal of the American Mathematical Society. ,vol. 15, pp. 497- 529 ,(2001) , 10.1090/S0894-0347-01-00385-X
Christof Geiß, Bernard Leclerc, Jan Schröer, Kac–Moody groups and cluster algebras Advances in Mathematics. ,vol. 228, pp. 329- 433 ,(2011) , 10.1016/J.AIM.2011.05.011
Tom Bridgeland, An introduction to motivic Hall algebras arXiv: Algebraic Geometry. ,(2010)