Hall algebras and curve-counting invariants

作者: Tom Bridgeland

DOI: 10.1090/S0894-0347-2011-00701-7

关键词:

摘要: We use Joyce's theory of motivic Hall algebras to prove that reduced Donaldson-Thomas curve-counting invariants on Calabi-Yau threefolds coincide with stable pair invariants, and the generating functions for these are Laurent expansions rational functions.

参考文章(27)
Janos Kollár, Shigefumi Mori, Birational Geometry of Algebraic Varieties ,(1998)
Nitin Nitsure, Construction of Hilbert and Quot Schemes arXiv: Algebraic Geometry. ,(2005)
R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations Journal of Differential Geometry. ,vol. 54, pp. 367- 438 ,(2000) , 10.4310/JDG/1214341649
Alexander Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert Séminaire Bourbaki. ,vol. 6, pp. 249- 276 ,(1961)
D. Joyce, MOTIVIC INVARIANTS OF ARTIN STACKS AND ‘STACK FUNCTIONS’ Quarterly Journal of Mathematics. ,vol. 58, pp. 345- 392 ,(2007) , 10.1093/QMATH/HAM019
Kai Behrend, Donaldson-Thomas invariants via microlocal geometry arXiv: Algebraic Geometry. ,(2005)
Tom Bridgeland, An introduction to motivic Hall algebras arXiv: Algebraic Geometry. ,(2010)
Dominic Joyce, Configurations in abelian categories. II. Ringel–Hall algebras Advances in Mathematics. ,vol. 210, pp. 635- 706 ,(2007) , 10.1016/J.AIM.2006.07.006
Idun Reiten, O SmaløSverre, Dieter Happel, Tilting in Abelian Categories and Quasitilted Algebras ,(1996)
Yukinobu Toda, Curve counting theories via stable objects I. DT/PT correspondence Journal of the American Mathematical Society. ,vol. 23, pp. 1119- 1157 ,(2010) , 10.1090/S0894-0347-10-00670-3