UWB: Machine Learning Approach to Aspect-Based Sentiment Analysis

作者: Tomáš Brychcín , Michal Konkol , Josef Steinberger

DOI: 10.3115/V1/S14-2145

关键词: Natural language processingTask (project management)SemanticsSemEvalTraining setSentiment analysisComputer scienceMachine learningArtificial intelligence

摘要: This paper describes our system participating in the aspect-based sentiment analysis task of Semeval 2014. The goal was to identify aspects given target entities and expressed towards each aspect. We firstly introduce a based on supervised machine learning, which is strictly constrained uses training data as only source information. then extended by unsupervised methods for latent semantics discovery (LDA semantic spaces) well approach vocabularies. evaluation done two domains, restaurants laptops. show that leads very promising results.

参考文章(27)
George Karypis, CLUTO - A Clustering Toolkit Defense Technical Information Center. ,(2002) , 10.21236/ADA439508
Andrea Esuli, Stefano Baccianella, Fabrizio Sebastiani, SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. language resources and evaluation. ,(2010)
Michal Konkol, Brainy: A Machine Learning Library Artificial Intelligence and Soft Computing. pp. 490- 499 ,(2014) , 10.1007/978-3-319-07176-3_43
L. A. Ramshaw, M. P. Marcus, Text Chunking Using Transformation-Based Learning meeting of the association for computational linguistics. pp. 157- 176 ,(1999) , 10.1007/978-94-017-2390-9_10
David M Blei, Andrew Y Ng, Michael I Jordan, None, Latent dirichlet allocation Journal of Machine Learning Research. ,vol. 3, pp. 993- 1022 ,(2003) , 10.5555/944919.944937
Xiaowen Ding, Bing Liu, Philip S. Yu, A holistic lexicon-based approach to opinion mining web search and data mining. pp. 231- 240 ,(2008) , 10.1145/1341531.1341561
Kevin Lund, Curt Burgess, Producing high-dimensional semantic spaces from lexical co-occurrence Behavior Research Methods, Instruments, & Computers. ,vol. 28, pp. 203- 208 ,(1996) , 10.3758/BF03204766
T. L. Griffiths, M. Steyvers, Finding scientific topics Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 5228- 5235 ,(2004) , 10.1073/PNAS.0307752101
Erik Boiy, Marie-Francine Moens, A machine learning approach to sentiment analysis in multilingual Web texts Information Retrieval. ,vol. 12, pp. 526- 558 ,(2009) , 10.1007/S10791-008-9070-Z
Samaneh Moghaddam, Martin Ester, Opinion digger Proceedings of the 19th ACM international conference on Information and knowledge management - CIKM '10. pp. 1825- 1828 ,(2010) , 10.1145/1871437.1871739