Brainy: A Machine Learning Library

作者: Michal Konkol

DOI: 10.1007/978-3-319-07176-3_43

关键词:

摘要: Brainy is a newly created cross-platform machine learning library written in Java. It defines interfaces for common types of tasks and implementations the most popular algorithms. utilizes complex mathematical infrastructure which also part library. The main difference compared to other ML libraries sophisticated system feature definition management. design focused on efficiency, reliability, extensibility simple usage. has been extensively used research as well commercial projects major companies Czech Republic USA. released under GPL license freely available from project web page.

参考文章(10)
Michal Konkol, Miloslav Konopík, Maximum entropy named entity recognition for Czech language text speech and dialogue. pp. 203- 210 ,(2011) , 10.1007/978-3-642-23538-2_26
Michal Konkol, Miloslav Konopík, CRF-Based Czech Named Entity Recognizer and Consolidation of Czech NER Research text speech and dialogue. ,vol. 8082, pp. 153- 160 ,(2013) , 10.1007/978-3-642-40585-3_20
Yves Van de Peer, Yvan Saeys, Thomas Abeel, Java-ML: A Machine Learning Library Journal of Machine Learning Research. ,vol. 10, pp. 931- 934 ,(2009) , 10.5555/1577069.1577103
Vincent J. Della Pietra, Adam L. Berger, Stephen A. Della Pietra, A maximum entropy approach to natural language processing Computational Linguistics. ,vol. 22, pp. 39- 71 ,(1996) , 10.5555/234285.234289
Robert Malouf, A comparison of algorithms for maximum entropy parameter estimation international conference on computational linguistics. pp. 1- 7 ,(2002) , 10.3115/1118853.1118871
Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, Ian H. Witten, The WEKA data mining software ACM SIGKDD Explorations Newsletter. ,vol. 11, pp. 10- 18 ,(2009) , 10.1145/1656274.1656278
S. Lloyd, Least squares quantization in PCM IEEE Transactions on Information Theory. ,vol. 28, pp. 129- 137 ,(1982) , 10.1109/TIT.1982.1056489
Ivan Habernal, Tomáš Brychcín, Semantic Spaces for Sentiment Analysis text speech and dialogue. pp. 484- 491 ,(2013) , 10.1007/978-3-642-40585-3_61
Josef Steinberger, Ivan Habernal, Tomáš Ptáċek, Sentiment Analysis in Czech Social Media Using Supervised Machine Learning north american chapter of the association for computational linguistics. pp. 65- 74 ,(2013)
Tomáš Brychc'in, Ivan Habernal, Unsupervised Improving of Sentiment Analysis Using Global Target Context recent advances in natural language processing. pp. 122- 128 ,(2013)