Unsupervised Improving of Sentiment Analysis Using Global Target Context

作者: Tomáš Brychc'in , Ivan Habernal

DOI:

关键词:

摘要: Current approaches to document-level sentiment analysis rely on local information, e.g., the words within given document. We try achieve better performance by incorporating global context of target (e.g., a movie or product). assume that labels reviews about same are often consistent in some way. model this consistency Dirichlet distribution over and use it together with Maximum entropy classifier gain significant improvement. This unsupervised extension increases classification F-measure almost 3% absolute both Czech English review datasets outperforms current state art.

参考文章(18)
Bing Liu, Lei Zhang, A Survey of Opinion Mining and Sentiment Analysis Mining Text Data. pp. 415- 463 ,(2012) , 10.1007/978-1-4614-3223-4_13
Fangtao Li, Xiaoyan Zhu, Minlie Huang, Sentiment analysis with global topics and local dependency national conference on artificial intelligence. pp. 1371- 1376 ,(2010)
David M Blei, Andrew Y Ng, Michael I Jordan, None, Latent dirichlet allocation Journal of Machine Learning Research. ,vol. 3, pp. 993- 1022 ,(2003) , 10.5555/944919.944937
T. L. Griffiths, M. Steyvers, Finding scientific topics Proceedings of the National Academy of Sciences of the United States of America. ,vol. 101, pp. 5228- 5235 ,(2004) , 10.1073/PNAS.0307752101
Tong Zhao, Chunping Li, Qiang Ding, Li Li, User-sentiment topic model Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics - MDS '12. pp. 10- ,(2012) , 10.1145/2350190.2350200
Jorge Nocedal, Updating Quasi-Newton Matrices With Limited Storage Mathematics of Computation. ,vol. 35, pp. 773- 782 ,(1980) , 10.1090/S0025-5718-1980-0572855-7
Kateřina Veselovská, Sentence-level sentiment analysis in Czech web intelligence, mining and semantics. pp. 65- ,(2012) , 10.1145/2254129.2254208
Vincent J. Della Pietra, Adam L. Berger, Stephen A. Della Pietra, A maximum entropy approach to natural language processing Computational Linguistics. ,vol. 22, pp. 39- 71 ,(1996) , 10.5555/234285.234289
Chenghua Lin, Yulan He, Joint sentiment/topic model for sentiment analysis conference on information and knowledge management. pp. 375- 384 ,(2009) , 10.1145/1645953.1646003
Andrew Y. Ng, Christopher Potts, Andrew L. Maas, Dan Huang, Peter T. Pham, Raymond E. Daly, Learning Word Vectors for Sentiment Analysis meeting of the association for computational linguistics. pp. 142- 150 ,(2011)