Molecular dynamics simulations for CO2 absorption spectra. I. Line broadening and the far wing of the ν3 infrared band

作者: J.-M. Hartmann , C. Boulet , H. Tran , M. T. Nguyen

DOI: 10.1063/1.3489349

关键词: InfraredAtomic physicsAngular velocityCenter of massSpectral lineDiffusion (business)DipoleRelaxation (NMR)Molecular dynamicsChemistry

摘要: Classical molecular dynamics simulations (CMDS) have been carried out for gaseous CO2 starting from the intermolecular potential energy surface. Through calculations a large number of molecules treated as rigid rotors, various autocorrelation functions (ACFs) are obtained together with probabilities rotational changes. Those used in present paper ACFs center mass velocity and orientation, conditional probability change angular speed. They enable calculations, respectively, diffusion coefficient, infrared (dipolar) band shape including wings, individual line-broadening coefficients. It is shown that these free any adjustable parameter, lead to good agreement measured values. This expected previous studies coefficient coefficients, but it is, our knowledge, first demonstration interest CMDS prediction wings. ...

参考文章(30)
Lilian Joly, Fabien Gibert, Bruno Grouiez, Agnès Grossel, Bertrand Parvitte, Georges Durry, Virginie Zéninari, A complete study of CO2 line parameters around 4845 cm−1 for Lidar applications Journal of Quantitative Spectroscopy & Radiative Transfer. ,vol. 109, pp. 426- 434 ,(2008) , 10.1016/J.JQSRT.2007.06.003
Sergey V. Ivanov, Oleg G. Buzykin, On the accuracy of classical, semiclassical and quantum methods in collision line broadening calculations: Comparative analysis for C2H2–Ar, He systems Journal of Quantitative Spectroscopy and Radiative Transfer. ,vol. 111, pp. 2341- 2353 ,(2010) , 10.1016/J.JQSRT.2010.04.031
Bruce J. Berne, Joshua Jortner, Roy Gordon, Vibrational Relaxation of Diatomic Molecules in Gases and Liquids The Journal of Chemical Physics. ,vol. 47, pp. 1600- 1608 ,(1967) , 10.1063/1.1712140
Peter H. Berens, Kent R. Wilson, Molecular dynamics and spectra. I. Diatomic rotation and vibration Journal of Chemical Physics. ,vol. 74, pp. 4872- 4882 ,(1981) , 10.1063/1.441739
I. Amdur, J. W. Irvine, E. A. Mason, J. Ross, Diffusion Coefficients of the Systems CO2–CO2 and CO2–N2O The Journal of Chemical Physics. ,vol. 20, pp. 436- 443 ,(1952) , 10.1063/1.1700438
L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, Accurate calculated tabulations of IR and Raman CO 2 line broadening by CO 2 , H 2 O, N 2 , O 2 in the 300–2400-K temperature range Applied Optics. ,vol. 27, pp. 3902- 3907 ,(1988) , 10.1364/AO.27.003902
A. Predoi-Cross, A.V. Unni, W. Liu, I. Schofield, C. Holladay, A.R.W. McKellar, D. Hurtmans, Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands, line mixing, and speed dependence Journal of Molecular Spectroscopy. ,vol. 245, pp. 34- 51 ,(2007) , 10.1016/J.JMS.2007.07.004
R. G. Gordon, Semiclassical Theory of Spectra and Relaxation in Molecular Gases The Journal of Chemical Physics. ,vol. 45, pp. 1649- 1655 ,(1966) , 10.1063/1.1727808
P. W. Rosenkranz, Pressure broadening of rotational bands. I - A statistical theory Journal of Chemical Physics. ,vol. 83, pp. 6139- 6144 ,(1985) , 10.1063/1.449607
J.-M. Hartmann, A simple empirical model for the collisional spectral shift of air-broadened CO2 lines Journal of Quantitative Spectroscopy & Radiative Transfer. ,vol. 110, pp. 2019- 2026 ,(2009) , 10.1016/J.JQSRT.2009.05.016