作者: V. G. Kac , D. H. Peterson
DOI: 10.1007/BF01388487
关键词: Cartan matrix 、 Mathematics 、 Unitary representation 、 Moment map 、 Structure (category theory) 、 Covariance and contravariance of vectors 、 Sesquilinear form 、 Pure mathematics 、 Lie algebra 、 Convexity
摘要: In this paper, we show that a Kac-Moody algebra fl(A) associated to symmetrizable generalized Cartan matrix A carries contravariant Hermitian form which is positive-definite on all root spaces. We deduce every integrable highest weight g(A)-module L(A) positivedefinite form. This allows us define the moment map and prove generalization of Schur-Horn-Kosta nt-Heckman-Atiya h-Pressley convexity theorem. The proofs are based an identity also gives estimates for action 9(A) L(A). hope main idea behind paper apparent: it use interplay between coadjoint representations. grateful V. Guillemin introduction map.