Unitary structure in representations of infinite-dimensional groups and a convexity theorem

作者: V. G. Kac , D. H. Peterson

DOI: 10.1007/BF01388487

关键词: Cartan matrixMathematicsUnitary representationMoment mapStructure (category theory)Covariance and contravariance of vectorsSesquilinear formPure mathematicsLie algebraConvexity

摘要: In this paper, we show that a Kac-Moody algebra fl(A) associated to symmetrizable generalized Cartan matrix A carries contravariant Hermitian form which is positive-definite on all root spaces. We deduce every integrable highest weight g(A)-module L(A) positivedefinite form. This allows us define the moment map and prove generalization of Schur-Horn-Kosta nt-Heckman-Atiya h-Pressley convexity theorem. The proofs are based an identity also gives estimates for action 9(A) L(A). hope main idea behind paper apparent: it use interplay between coadjoint representations. grateful V. Guillemin introduction map.

参考文章(14)
Michael Francis Atiyah, Andrew Nicholas Pressley, Convexity and Loop Groups Arithmetic and Geometry. pp. 33- 63 ,(1983) , 10.1007/978-1-4757-9286-7_3
Victor G. Kac, Dale H. Peterson, Regular Functions on Certain Infinite-dimensional Groups Arithmetic and Geometry. pp. 141- 166 ,(1983) , 10.1007/978-1-4757-9286-7_8
Robert Steinberg, John Faulkner, Robert Wilson, Lectures on Chevalley Groups University Lecture Series. ,vol. 66, ,(2016) , 10.1090/ULECT/066
V. Guillemin, S. Sternberg, Convexity properties of the moment mapping. II Inventiones Mathematicae. ,vol. 77, pp. 533- 546 ,(1982) , 10.1007/BF01388837
Howard Garland, The arithmetic theory of loop algebras Journal of Algebra. ,vol. 53, pp. 480- 551 ,(1978) , 10.1016/0021-8693(78)90294-6
V G Kac, SIMPLE IRREDUCIBLE GRADED LIE ALGEBRAS OF FINITE GROWTH Mathematics of The Ussr-izvestiya. ,vol. 2, pp. 1271- 1311 ,(1968) , 10.1070/IM1968V002N06ABEH000729
D. H. Peterson, V. G. Kac, Infinite flag varieties and conjugacy theorems Proceedings of the National Academy of Sciences of the United States of America. ,vol. 80, pp. 1778- 1782 ,(1983) , 10.1073/PNAS.80.6.1778
Eduard Looijenga, Invariant theory for generalized root systems Inventiones Mathematicae. ,vol. 61, pp. 1- 32 ,(1980) , 10.1007/BF01389892
I. B. Frenkel, Orbital theory for affine Lie algebras. Inventiones Mathematicae. ,vol. 77, pp. 301- 352 ,(1984) , 10.1007/BF01388449