An Adjoint Quotient for Certain Groups Attached to Kac-Moody Algebras

作者: Peter Slodowy

DOI: 10.1007/978-1-4612-1104-4_12

关键词:

摘要: In this article we want to give a survey of that part our Habilitationsschrift [16] which deals with conjugacy classes in certain groups G attached Kac-Moody Lie algebras. These investigations were motivated on one side by the result Brieskorn relating simple singularities and algebraic (see for instance [14]) other recent results Looijenga deformation theory simply elliptic cusp ([9], [10]). The show at least some extent there is similar relationship between these associated as groups. Here, shall limit ourselves group-theoretical aspects, i.e. definition (due E. Looijenga) an adjoint quotient arbitrary group analyze structure its fibers. A large notes will be dedicated explanation Looijenga’s “partial compactification” T/W maximal torus T Weyl W since space figure base G. Its stratification into boundary components induces partition can described terms building We conjecture representation-theoretic interpretation seems relevant when dealing character-theoretic construction quotient. Some open problems direction are mentioned end. Detailed proofs may found [16]. There also relations explained.

参考文章(22)
Victor G. Kac, Dale H. Peterson, Regular Functions on Certain Infinite-dimensional Groups Arithmetic and Geometry. pp. 141- 166 ,(1983) , 10.1007/978-1-4757-9286-7_8
Peter Slodowy, Singularitäten, Kac-Moody-Liealgebren, assoziierte Gruppen und Verallgemeinerungen Mathematisches Institut, Univeristät Bonn : Max-Planck-Institut für Mathematik. ,(1984)
Robert Steinberg, Conjugacy Classes in Algebraic Groups ,(1974)
Jacques Tits, Définition par générateurs et relations de groupes avec BN-paires Comptes rendus des séances de l'Académie des sciences. Série 1, Mathématique. ,vol. 293, pp. 317- 322 ,(1981)
Alex J. Feingold, Igor B. Frenkel, A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2 Mathematische Annalen. ,vol. 263, pp. 87- 144 ,(1983) , 10.1007/BF01457086
D. H. Peterson, V. G. Kac, Infinite flag varieties and conjugacy theorems Proceedings of the National Academy of Sciences of the United States of America. ,vol. 80, pp. 1778- 1782 ,(1983) , 10.1073/PNAS.80.6.1778
Eduard Looijenga, Invariant theory for generalized root systems Inventiones Mathematicae. ,vol. 61, pp. 1- 32 ,(1980) , 10.1007/BF01389892
V. G. Kac, D. H. Peterson, Unitary structure in representations of infinite-dimensional groups and a convexity theorem Inventiones Mathematicae. ,vol. 76, pp. 1- 14 ,(1984) , 10.1007/BF01388487
Richard Marcuson, Tits' systems in generalized nonadjoint Chevalley groups Journal of Algebra. ,vol. 34, pp. 84- 96 ,(1975) , 10.1016/0021-8693(75)90195-7