A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set

作者: C. Le Provost , F. Lyard , J. M. Molines , M. L. Genco , F. Rabilloud

DOI: 10.1029/97JC01733

关键词: Ocean tide modelMeteorologyEmpirical modellingSatellite altimeterFinite element methodDerived DataAtmospheric sciencesSea levelData assimilationEnvironmental scienceAltimeterPalaeontologyForestryAquatic scienceAtmospheric ScienceSoil scienceGeochemistry and PetrologyGeophysicsOceanographyWater Science and TechnologyEarth-Surface ProcessesEcology (disciplines)Earth and Planetary Sciences (miscellaneous)Space and Planetary Science

摘要: An upgraded version of the tidal solutions (FES94.1) is presented, obtained by assimilating an altimeter-derived data set in finite element hydrodynamic model, following representer approach. The assimilated are drawn from CSR2.0 Texas sampled on a 5° × grid. assimilation applied over Atlantic, Indian, and Pacific Oceans. standard release new FES95.2 0.5° gridded full solutions. associated prediction model includes 26 constituents. eight major constituents directly model: K1, O1, Q1, M2, S2, N2, K2, 2N2, corrected except K2 2N2. other 18 derived admittance. Among them μ2, ν2, L2, T2, M1, P1, J1, OO1. quality these evaluated reference to sea truth 95 stations. This significantly improved after process applied: root-sum-square (RSS) differences between observations, for constituents, reduced 3.8 cm FES94.1 2.8 FES95.2, i.e., gain 1 cm. performances comparing predictions with observations at 59 sites distributed world ocean looking level variance surface variability observed T/P altimeter its cross-over track points correction. These evaluations lead same conclusion: this performs much better than one based FES94.1, because correction increase number 13 26. accuracy those produced best recent empirical models.

参考文章(30)
Gary D. Egbert, Andrew F. Bennett, Data assimilation methods for ocean tides Elsevier oceanography series. ,vol. 61, pp. 147- 179 ,(1996) , 10.1016/S0422-9894(96)80009-2
Srinivas V. Bettadpur, Richard J. Eanes, Geographical representation of radial orbit perturbations due to ocean tides: Implications for satellite altimetry Journal of Geophysical Research. ,vol. 99, pp. 24883- 24894 ,(1994) , 10.1029/94JC02080
Florent H. Lyard, The tides in the Arctic Ocean from a finite element model Journal of Geophysical Research: Oceans. ,vol. 102, pp. 15611- 15638 ,(1997) , 10.1029/96JC02596
Shailen D. Desai, John M. Wahr, Empirical ocean tide models estimated from TOPEX/POSEIDON altimetry Journal of Geophysical Research. ,vol. 100, pp. 25205- 25228 ,(1995) , 10.1029/95JC02258
Florent H. Lyard, Christian Le Provost, Energy budget of the Tidal Hydrodynamic Model FES94.1 Geophysical Research Letters. ,vol. 24, pp. 687- 690 ,(1997) , 10.1029/97GL00498
Ernst W. Schwiderski, Ocean Tides. Part 1. Global Ocean Tidal Equations Marine Geodesy. ,vol. 3, pp. 161- 217 ,(1980) , 10.1080/01490418009387997
E. J. O. Schrama, R. D. Ray, A preliminary tidal analysis of TOPEX/POSEIDON altimetry Journal of Geophysical Research. ,vol. 99, pp. 24799- 24808 ,(1994) , 10.1029/94JC01432
Ernst W. Schwiderski, Ocean tides, part II: A hydrodynamical interpolation model Marine Geodesy. ,vol. 3, pp. 219- 255 ,(1980) , 10.1080/01490418009387998
J. M. Molines, C. Le Provost, F. Lyard, R. D. Ray, C. K. Shum, R. J. Eanes, Tidal corrections in the TOPEX/POSEIDON geophysical data records Journal of Geophysical Research. ,vol. 99, pp. 24749- 24760 ,(1994) , 10.1029/94JC01959