Protein Inference and Protein Quantification: Two Sides of the Same Coin

作者: Peijun Zhu , Zengyou He , Ting Huang

DOI:

关键词: Quantitative proteomicsSpecial caseProtein identificationComputational biologySpectral countingComputational problemShotgun proteomicsProtein abundanceBioinformaticsComputer scienceProtein inference

摘要: Motivation: In mass spectrometry-based shotgun proteomics, protein quantification and identification are two major computational problems. To quantify the abundance, a list of proteins must be firstly inferred from sample. Then relative or absolute abundance is estimated with methods, such as spectral counting. Until now, researchers have been dealing these processes separately. fact, they sides same coin in sense that truly present those non-zero abundances. Then, one interesting question if we regard inference problem special problem, it possible to achieve better performance? Contribution: this paper, investigate feasibility using methods solve problem. Protein determine whether each candidate sample not. calculate protein. Naturally, absent should zero Thus, argue can viewed case problem: Based on idea, our paper tries use three very simple effectively. Results: The experimental results six datasets show competitive previous algorithms. This demonstrates plausible take quantification, which opens door devising more effective algorithms perspective.

参考文章(45)
Banu Dost, Nuno Bandeira, Xiangqian Li, Zhouxin Shen, Steve Briggs, Vineet Bafna, Shared Peptides in Mass Spectrometry Based Protein Quantification Lecture Notes in Computer Science. pp. 356- 371 ,(2009) , 10.1007/978-3-642-02008-7_26
Miroslav Nikolov, Carla Schmidt, Henning Urlaub, Quantitative Mass Spectrometry-Based Proteomics: An Overview Methods in Molecular Biology. ,vol. 2228, pp. 85- 100 ,(2012) , 10.1007/978-1-61779-885-6_7
David N. Perkins, Darryl J. C. Pappin, David M. Creasy, John S. Cottrell, Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. ,vol. 20, pp. 3551- 3567 ,(1999) , 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
Bing Zhang, Matthew C. Chambers, David L. Tabb, Proteomic Parsimony through Bipartite Graph Analysis Improves Accuracy and Transparency Journal of Proteome Research. ,vol. 6, pp. 3549- 3557 ,(2007) , 10.1021/PR070230D
David L. Tabb, W. Hayes McDonald, John R. Yates, DTASelect and Contrast: Tools for Assembling and Comparing Protein Identifications from Shotgun Proteomics Journal of Proteome Research. ,vol. 1, pp. 21- 26 ,(2002) , 10.1021/PR015504Q
Ze-Qiang Ma, Surendra Dasari, Matthew C. Chambers, Michael D. Litton, Scott M. Sobecki, Lisa J. Zimmerman, Patrick J. Halvey, Birgit Schilling, Penelope M. Drake, Bradford W. Gibson, David L. Tabb, IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering. Journal of Proteome Research. ,vol. 8, pp. 3872- 3881 ,(2009) , 10.1021/PR900360J
Bingwen Lu, Akira Motoyama, Cristian Ruse, John Venable, John R. Yates, Improving protein identification sensitivity by combining MS and MS/MS information for shotgun proteomics using LTQ-Orbitrap high mass accuracy data. Analytical Chemistry. ,vol. 80, pp. 2018- 2025 ,(2008) , 10.1021/AC701697W
Erich Brunner, Christian H Ahrens, Sonali Mohanty, Hansruedi Baetschmann, Sandra Loevenich, Frank Potthast, Eric W Deutsch, Christian Panse, Ulrik de Lichtenberg, Oliver Rinner, Hookeun Lee, Patrick G A Pedrioli, Johan Malmstrom, Katja Koehler, Sabine Schrimpf, Jeroen Krijgsveld, Floyd Kregenow, Albert J R Heck, Ernst Hafen, Ralph Schlapbach, Ruedi Aebersold, A high-quality catalog of the Drosophila melanogaster proteome Nature Biotechnology. ,vol. 25, pp. 576- 583 ,(2007) , 10.1038/NBT1300