IDPicker 2.0: Improved protein assembly with high discrimination peptide identification filtering.

作者: Ze-Qiang Ma , Surendra Dasari , Matthew C. Chambers , Michael D. Litton , Scott M. Sobecki

DOI: 10.1021/PR900360J

关键词: Shotgun proteomicsComputational biologyBiologyDatabase search enginePeptideCombinatorial chemistryFalse discovery rateTandem mass spectrometryProteomicsPeptide mass fingerprintingPeptide spectral library

摘要: Tandem mass spectrometry-based shotgun proteomics has become a widespread technology for analyzing complex protein mixtures. A number of database searching algorithms have been developed to assign peptide sequences tandem spectra. Assembling the identifications proteins, however, is challenging issue because many peptides are shared among multiple proteins. IDPicker an open-source assembly tool that derives minimum list from filtered specified False Discovery Rate. Here, we update increase confident by combining scores produced search tools. By segregating thresholding using both precursor charge state and tryptic termini, retrieves more assembly. The new version robust against false positive especially in searches multispecies databases, requiring additional novel t...

参考文章(25)
Lawrence J. Licklider, Carson C. Thoreen, Junmin Peng, Steven P. Gygi, Automation of Nanoscale Microcapillary Liquid Chromatography−Tandem Mass Spectrometry with a Vented Column Analytical Chemistry. ,vol. 74, pp. 3076- 3083 ,(2002) , 10.1021/AC025529O
David L. Tabb, Yingying Huang, Vicki H. Wysocki, John R. Yates, Influence of basic residue content on fragment ion peak intensities in low-energy collision-induced dissociation spectra of peptides. Analytical Chemistry. ,vol. 76, pp. 1243- 1248 ,(2004) , 10.1021/AC0351163
David N. Perkins, Darryl J. C. Pappin, David M. Creasy, John S. Cottrell, Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. ,vol. 20, pp. 3551- 3567 ,(1999) , 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
Hyungwon Choi, Alexey I. Nesvizhskii, Semisupervised model-based validation of peptide identifications in mass spectrometry-based proteomics. Journal of Proteome Research. ,vol. 7, pp. 254- 265 ,(2008) , 10.1021/PR070542G
Hyungwon Choi, Debashis Ghosh, Alexey I. Nesvizhskii, Statistical validation of peptide identifications in large-scale proteomics using the target-decoy database search strategy and flexible mixture modeling. Journal of Proteome Research. ,vol. 7, pp. 286- 292 ,(2008) , 10.1021/PR7006818
Bing Zhang, Matthew C. Chambers, David L. Tabb, Proteomic Parsimony through Bipartite Graph Analysis Improves Accuracy and Transparency Journal of Proteome Research. ,vol. 6, pp. 3549- 3557 ,(2007) , 10.1021/PR070230D
David L. Tabb, W. Hayes McDonald, John R. Yates, DTASelect and Contrast: Tools for Assembling and Comparing Protein Identifications from Shotgun Proteomics Journal of Proteome Research. ,vol. 1, pp. 21- 26 ,(2002) , 10.1021/PR015504Q
Ruedi Aebersold, Matthias Mann, Mass spectrometry-based proteomics Nature. ,vol. 422, pp. 198- 207 ,(2003) , 10.1038/NATURE01511
Katheryn A. Resing, Karen Meyer-Arendt, Alex M. Mendoza, Lauren D. Aveline-Wolf, Karen R. Jonscher, Kevin G. Pierce, William M. Old, Hiu T. Cheung, Steven Russell, Joy L. Wattawa, Geoff R. Goehle, Robin D. Knight, Natalie G. Ahn, Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics. Analytical Chemistry. ,vol. 76, pp. 3556- 3568 ,(2004) , 10.1021/AC035229M
Jimmy K. Eng, Ashley L. McCormack, John R. Yates, An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database Journal of the American Society for Mass Spectrometry. ,vol. 5, pp. 976- 989 ,(1994) , 10.1016/1044-0305(94)80016-2