Spatial mapping of translational diffusion coefficients using diffusion tensor imaging: A mathematical description

作者: Anil N. Shetty , Sharon Chiang , Mirjana Maletic-Savatic , Gregor Kasprian , Marina Vannucci

DOI: 10.1002/CMR.A.21288

关键词: Anomalous diffusionMathematical analysisDiffusion MRIDiffusion AnisotropyDiffusion (business)Diffusion equationTractographyMolecular diffusionMathematicsFractional anisotropySpectroscopy

摘要: In this article, we discuss the theoretical background for diffusion weighted imaging and tensor imaging. Molecular is a random process involving thermal Brownian motion. biological tissues, underlying microstructures restrict of water molecules, making directionally dependent. Water in tissue mathematically characterized by tensor, elements which contain information about magnitude direction function coordinate system. Thus, it possible to generate contrast based primarily on effects. Expressing terms measured coefficient (eigenvalue) any one can lead errors. Nowhere more evident than white matter, due preferential orientation myelin fibers. The directional dependency removed diagonalization then yields set three eigenvalues eigenvectors, representing orthogonal axes ellipsoid, respectively. For example, eigenvalue corresponding eigenvector along long axis fiber corresponds qualitatively with least restriction. Determination principal values various anisotropic indices provides structural information. We review use measurements using modified Stejskal-Tanner equation. anisotropy analyzed decomposing symmetrical properties describing geometry tensor. further describe visualizing tract organization human brain.

参考文章(91)
Anatole Abragam, Principles of Nuclear Magnetism ,(1993)
Philipp G. Batchelor, Derek L.G. Hill, David Atkinson, Fernando Calamante, Study of Connectivity in the Brain Using the Full Diffusion Tensor from MRI information processing in medical imaging. pp. 121- 133 ,(2001) , 10.1007/3-540-45729-1_10
D.S. Tuch, V.J. Wedeen, T.G. Reese, D. Chessler, M.R. Weigel, R.M. Weiskoff, J.-G. Dou, Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI ,(2000)
Susumu Mori, Three-dimensional tract reconstruction Introduction to Diffusion Tensor Imaging. pp. 93- 123 ,(2007) , 10.1016/B978-044452828-5/50023-5
Geoff J. M. Parker, Daniel C. Alexander, Probabilistic Monte Carlo based mapping of cerebral connections utilising whole-brain crossing fibre information. information processing in medical imaging. ,vol. 18, pp. 684- 695 ,(2003) , 10.1007/978-3-540-45087-0_57
Toshihiko Kuroiwa, Tsukasa Nagaoka, Masato Ueki, Ichiro Yamada, Naoyuki Miyasaka, Hideaki Akimoto, Different Apparent Diffusion Coefficient Water Content Correlations of Gray and White Matter During Early Ischemia Stroke. ,vol. 29, pp. 859- 865 ,(1998) , 10.1161/01.STR.29.4.859
Cheng Guan Koay, Evren Özarslan, Conceptual foundations of diffusion in magnetic resonance Concepts in Magnetic Resonance Part A. ,vol. 42, pp. 116- 129 ,(2013) , 10.1002/CMR.A.21269
Ziqian Chen, Ping Ni, Jing Zhang, Youqiang Ye, Hui Xiao, Gennian Qian, Shangwen Xu, Jingliang Wang, Xizhang Yang, Jinhua Chen, Biyun Zhang, Yanjun Zeng, Evaluating ischemic stroke with diffusion tensor imaging. Neurological Research. ,vol. 30, pp. 720- 726 ,(2008) , 10.1179/174313208X297968
B.W. Kreher, I. Mader, V.G. Kiselev, Gibbs tracking: A novel approach for the reconstruction of neuronal pathways† Magnetic Resonance in Medicine. ,vol. 60, pp. 953- 963 ,(2008) , 10.1002/MRM.21749