An intrinsic approach to manifold constrained variational problems

作者: Matteo Focardi , Emanuele Spadaro

DOI: 10.1007/S10231-011-0216-Z

关键词: Product metricManifoldMathematical analysisEmbeddingEuclidean geometrySobolev spacePure mathematicsMathematicsMetric spaceSobolev inequalityFisher information metric

摘要: Motivated by some questions in continuum mechanics and analysis metric spaces, we give an intrinsic characterization of sequentially weak lower semicontinuous functionals defined on Sobolev maps with values into manifolds without embedding the target Euclidean spaces.

参考文章(41)
Luigi Ambrosio, Metric space valued functions of bounded variation Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 17, pp. 439- 478 ,(1990)
Nicholas J. Korevaar, Richard M. Schoen, Sobolev spaces and harmonic maps for metric space targets Communications in Analysis and Geometry. ,vol. 1, pp. 561- 659 ,(1993) , 10.4310/CAG.1993.V1.N4.A4
Shin-Ichi Ohta, Cheeger Type Sobolev Spaces for Metric Space Targets Potential Analysis. ,vol. 20, pp. 149- 175 ,(2004) , 10.1023/A:1026359313080
Charles Bradfield Morrey, Multiple Integrals in the Calculus of Variations ,(1966)
Uha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, Jeremy T. Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings Journal D Analyse Mathematique. ,vol. 85, pp. 87- 139 ,(2001) , 10.1007/BF02788076
John M. Ball, Arghir Zarnescu, Orientable and Non-Orientable Line Field Models for Uniaxial Nematic Liquid Crystals Molecular Crystals and Liquid Crystals. ,vol. 495, pp. 221- ,(2008) , 10.1080/15421400802430067