Cheeger Type Sobolev Spaces for Metric Space Targets

作者: Shin-Ichi Ohta

DOI: 10.1023/A:1026359313080

关键词: Besov spacePure mathematicsSobolev inequalityBirnbaum–Orlicz spaceMetric differentialMathematical analysisLp spaceEberlein–Šmulian theoremSobolev spaceMathematicsInterpolation space

摘要: In this paper, we consider the natural generalization of Cheeger type Sobolev spaces to maps into a metric space. We solve Dirichlet problem for CAT(0)-space targets, and obtain some results about relation between Banach space those subset that also prove minimality upper pointwise Lipschitz constant functions locally an Alexandrov curvature bounded above.

参考文章(23)
Luigi Ambrosio, Metric space valued functions of bounded variation Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 17, pp. 439- 478 ,(1990)
Nicholas J. Korevaar, Richard M. Schoen, Sobolev spaces and harmonic maps for metric space targets Communications in Analysis and Geometry. ,vol. 1, pp. 561- 659 ,(1993) , 10.4310/CAG.1993.V1.N4.A4
Herbert Federer, Geometric Measure Theory ,(1969)
Yukio Otsu, Takashi Shioya, The Riemannian structure of Alexandrov spaces Journal of Differential Geometry. ,vol. 39, pp. 629- 658 ,(1994) , 10.4310/JDG/1214455075
Piotr Hajłasz, Sobolev Spaces on an Arbitrary Metric Space Potential Analysis. ,vol. 5, pp. 403- 415 ,(1996) , 10.1007/BF00275475
Dmitri Burago, Yuri Burago, Sergei Ivanov, A Course in Metric Geometry ,(2001)