作者: Shin-Ichi Ohta
关键词: Besov space 、 Pure mathematics 、 Sobolev inequality 、 Birnbaum–Orlicz space 、 Metric differential 、 Mathematical analysis 、 Lp space 、 Eberlein–Šmulian theorem 、 Sobolev space 、 Mathematics 、 Interpolation space
摘要: In this paper, we consider the natural generalization of Cheeger type Sobolev spaces to maps into a metric space. We solve Dirichlet problem for CAT(0)-space targets, and obtain some results about relation between Banach space those subset that also prove minimality upper pointwise Lipschitz constant functions locally an Alexandrov curvature bounded above.