Transport in a partially open porous media flow

作者: Guy Metcalfe , Daniel Lester , Mike Trefry , Alison Ord

DOI: 10.1117/12.769319

关键词: Hele-Shaw flowPorous mediumDissipative systemCalculusIsothermal flowOpen-channel flowDarcy's lawPotential flowMass flowMaterials scienceMechanics

摘要: In nature dissipative fluxes of fluid, heat, and/or reacting species couple to each other and may also deformation a surrounding porous matrix. We use the well-known analogy Hele-Shaw flow Darcy make model medium with porosity proportional local cell height. Time- space-varying fluid injection from multiple source/sink wells lets us create many different kinds chaotic chemical concentration patterns. Results an initial time-dependent potential illustrate that this is partially open flow, in which parts remain forever pass through residence time exit distributions have self-similar features control parameter space stirring.

参考文章(13)
B. A. Buffham, E. B. Nauman, Mixing in continuous flow systems ,(1983)
D. Rothstein, E. Henry, J. P. Gollub, Persistent patterns in transient chaotic fluid mixing Nature. ,vol. 401, pp. 770- 772 ,(1999) , 10.1038/44529
Guy Metcalfe, M. Rudman, A. Brydon, L. J. W. Graham, R. Hamilton, Composing chaos: An experimental and numerical study of an open duct mixing flow Aiche Journal. ,vol. 52, pp. 9- 28 ,(2006) , 10.1002/AIC.10640
Tamás Tél, Alessandro de Moura, Celso Grebogi, György Károlyi, Chemical and biological activity in open flows: A dynamical system approach Physics Reports. ,vol. 413, pp. 91- 196 ,(2005) , 10.1016/J.PHYSREP.2005.01.005
D.R. Lester, M. Rudman, G. Metcalfe, H.M. Blackburn, Global parametric solutions of scalar transport Journal of Computational Physics. ,vol. 227, pp. 3032- 3057 ,(2008) , 10.1016/J.JCP.2007.10.015
Stephen Wiggins, Julio M. Ottino, Foundations of chaotic mixing. Philosophical Transactions of the Royal Society A. ,vol. 362, pp. 937- 970 ,(2004) , 10.1098/RSTA.2003.1356
J. M. Ottino, F. J. Muzzio, M. Tjahjadi, J. G. Franjione, S. C. Jana, H. A. Kusch, Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing processes. Science. ,vol. 257, pp. 754- 760 ,(1992) , 10.1126/SCIENCE.257.5071.754
Michel Speetjens, Guy Metcalfe, Murray Rudman, Topological mixing study of non-Newtonian duct flows Physics of Fluids. ,vol. 18, pp. 103103- ,(2006) , 10.1063/1.2359698
Mark A. Stremler, Baratunde A. Cola, A maximum entropy approach to optimal mixing in a pulsed source–sink flow Physics of Fluids. ,vol. 18, pp. 011701- ,(2006) , 10.1063/1.2162184
Scott W. Jones, Hassan Aref, Chaotic advection in pulsed source–sink systems Physics of Fluids. ,vol. 31, pp. 469- 485 ,(1988) , 10.1063/1.866828