Estimating the Intrinsic Dimension of Hyperspectral Images Using an Eigen-Gap Approach

作者: Jean-Yves Tourneret , Cédric Richard , Malika Kharouf , Abderrahim Halimi , Paul Honeine

DOI: 10.1109/TGRS.2016.2528298

关键词: EndmemberRandom matrixMixture modelArtificial intelligenceMathematicsEigenvalues and eigenvectorsHyperspectral imagingPattern recognitionNoise (video)Intrinsic dimensionReal image

摘要: 3AbstractLinear mixture models are commonly used to represent hyperspectral datacube as a linearcombinations of endmember spectra. However, determining the number endmembers for imagesembedded in noise is crucial task. This paper proposes fully automatic approach estimating thenumber images. The estimation based on recent results randommatrix theory related so-called spiked population model. More precisely, we study gapbetween successive eigenvalues sample covariance matrix constructed from high dimensionalnoisy samples. resulting strategy unsupervised and robust correlated noise. Thisstrategy validated both synthetic real experimental very promisingand show accuracy this algorithm with respect state-of-the-art algorithms.Index TermsHyperspectral imaging, linear spectral mixture, number, random theory,sample matrix, eigen-gap approach.

参考文章(39)
Steve Sutley, Roger N. Clark, Andrea Gallagher, Fred Kruse, Gregg Swayze, Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada ,(1992)
Iain M. Johnstone, On the distribution of the largest eigenvalue in principal components analysis Annals of Statistics. ,vol. 29, pp. 295- 327 ,(2001) , 10.1214/AOS/1009210544
Alexei Onatski, TESTING HYPOTHESES ABOUT THE NUMBER OF FACTORS IN LARGE FACTOR MODELS Econometrica. ,vol. 77, pp. 1447- 1479 ,(2009) , 10.3982/ECTA6964
R. E. ROGER, J. F. ARNOLD, Reliably estimating the noise in AVIRIS hyperspectral images International Journal of Remote Sensing. ,vol. 17, pp. 1951- 1962 ,(1996) , 10.1080/01431169608948750
Romain Couillet, Walid Hachem, Fluctuations of Spiked Random Matrix Models and Failure Diagnosis in Sensor Networks IEEE Transactions on Information Theory. ,vol. 59, pp. 509- 525 ,(2013) , 10.1109/TIT.2012.2218572
Julia Vinogradova, Romain Couillet, Walid Hachem, A new method for source detection, power estimation, and localization in large sensor networks under noise with unknown statistics international conference on acoustics, speech, and signal processing. pp. 3943- 3946 ,(2013) , 10.1109/ICASSP.2013.6638398
Yoann Altmann, Abderrahim Halimi, Nicolas Dobigeon, Jean-Yves Tourneret, Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery IEEE Transactions on Image Processing. ,vol. 21, pp. 3017- 3025 ,(2012) , 10.1109/TIP.2012.2187668
Abderrahim Halimi, Yoann Altmann, Nicolas Dobigeon, Jean-Yves Tourneret, Nonlinear Unmixing of Hyperspectral Images Using a Generalized Bilinear Model IEEE Transactions on Geoscience and Remote Sensing. ,vol. 49, pp. 4153- 4162 ,(2011) , 10.1109/TGRS.2010.2098414
J. Rissanen, Paper: Modeling by shortest data description Automatica. ,vol. 14, pp. 465- 471 ,(1978) , 10.1016/0005-1098(78)90005-5
N. H. Nguyen, J. Chen, C. Richard, P. Honeine, C. Theys, Supervised Nonlinear Unmixing of Hyperspectral Images Using a Pre-image Methods Eas Publications Series. ,vol. 59, pp. 417- 437 ,(2013) , 10.1051/EAS/1359019