Using a Panchromatic Image to Improve Hyperspectral Unmixing

作者: Simon Rebeyrol , Yannick Deville , Véronique Achard , Xavier Briottet , Stephane May

DOI: 10.3390/RS12172834

关键词:

摘要: Hyperspectral unmixing is a widely studied field of research aiming at estimating the pure material signatures and their abundance fractions from hyperspectral images. Most spectral methods are based on prior knowledge assumptions that induce limitations, such as existence least one pixel for each material. This work presents new approach to overcome some these limitations by introducing co-registered panchromatic image in process. Our method, called Heterogeneity-Based Endmember Extraction coupled with Local Constrained Non-negative Matrix Factorization (HBEE-LCNMF), has several steps: first set endmembers estimated heterogeneity criterion applied followed clustering. Then, order complete this endmember set, local using constrained non-negative matrix factorization strategy, proposed. The performance our regards criteria, compared those state-of-the-art obtained synthetic satellite data describing urban periurban scenes, considering French HYPXIM/HYPEX2 mission characteristics. images built real reflectances do not contain endmember. simulated airborne acquisition spatial features mission. method demonstrates benefit reduce well-known data. On data, reduces angle between spectra 46% Vertex Component Analysis (VCA) N-finder (N-FINDR) methods. HBEE-LCNMF other yield equivalent performance, but, proposed shows more robustness over sets tested Moreover, does require know number endmembers.

参考文章(59)
A. D. Gordon, A Review of Hierarchical Classification Journal of the Royal Statistical Society: Series A (General). ,vol. 150, pp. 119- 137 ,(1987) , 10.2307/2981629
Jean-Yves Tourneret, Cédric Richard, Malika Kharouf, Abderrahim Halimi, Paul Honeine, Estimating the Intrinsic Dimension of Hyperspectral Images Using an Eigen-Gap Approach arXiv: Applications. ,(2015) , 10.1109/TGRS.2016.2528298
Luis Guanter, Hermann Kaufmann, Karl Segl, Saskia Foerster, Christian Rogass, Sabine Chabrillat, Theres Kuester, André Hollstein, Godela Rossner, Christian Chlebek, Christoph Straif, Sebastian Fischer, Stefanie Schrader, Tobias Storch, Uta Heiden, Andreas Mueller, Martin Bachmann, Helmut Mühle, Rupert Müller, Martin Habermeyer, Andreas Ohndorf, Joachim Hill, Henning Buddenbaum, Patrick Hostert, Sebastian van der Linden, Pedro Leitão, Andreas Rabe, Roland Doerffer, Hajo Krasemann, Hongyan Xi, Wolfram Mauser, Tobias Hank, Matthias Locherer, Michael Rast, Karl Staenz, Bernhard Sang, The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation Remote Sensing. ,vol. 7, pp. 8830- 8857 ,(2015) , 10.3390/RS70708830
Rob Heylen, Mario Parente, Paul Gader, A Review of Nonlinear Hyperspectral Unmixing Methods IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. ,vol. 7, pp. 1844- 1868 ,(2014) , 10.1109/JSTARS.2014.2320576
Søren Blaaberg, Trond Løke, Ivar Baarstad, Andrei Fridman, Pesal Koirala, A next generation VNIR-SWIR hyperspectral camera system: HySpex ODIN-1024 Electro-Optical and Infrared Systems: Technology and Applications XI. ,vol. 9249, ,(2014) , 10.1117/12.2067497
V Paul Pauca, Jon Piper, Robert J Plemmons, None, Nonnegative matrix factorization for spectral data analysis Linear Algebra and its Applications. ,vol. 416, pp. 29- 47 ,(2006) , 10.1016/J.LAA.2005.06.025
Jose M. Bioucas-Dias, A variable splitting augmented Lagrangian approach to linear spectral unmixing workshop on hyperspectral image and signal processing: evolution in remote sensing. pp. 1- 4 ,(2009) , 10.1109/WHISPERS.2009.5289072
Klaus Itten, Francesco Dell’Endice, Andreas Hueni, Mathias Kneubühler, Daniel Schläpfer, Daniel Odermatt, Felix Seidel, Silvia Huber, Jürg Schopfer, Tobias Kellenberger, Yves Bühler, Petra D’Odorico, Jens Nieke, Edoardo Alberti, Koen Meuleman, APEX - the Hyperspectral ESA Airborne Prism Experiment Sensors. ,vol. 8, pp. 6235- 6259 ,(2008) , 10.3390/S8106235
Naoto Yokoya, Takehisa Yairi, Akira Iwasaki, Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion IEEE Transactions on Geoscience and Remote Sensing. ,vol. 50, pp. 528- 537 ,(2012) , 10.1109/TGRS.2011.2161320