Tubular organization of crystalline argininosuccinase

作者: Samuel Dales , Irene T. Schulze , S. Ratner

DOI: 10.1016/0005-2795(71)90295-9

关键词: DimerCrystallographyChemistryHelixActive enzymeOptical diffractionTubuleElectron microscopeDiffractionWhole mountBiochemistry, Genetics and Molecular Biology (miscellaneous)

摘要: Abstract 1. 1.|Argininosuccinase ( l -argininosuccinate arginine-lyase, EC 4.3.2.1) from bovine liver crystallizes in the form of fine needles. When viewed by electron microscopy these are seen to be paracrystals, each needle consisting a spindle-shaped bundle loosely packed, hollow tubules. The tubules have uniform width 210 A and wall thickness 65 A. set helices (Set 1), placed almost perpendicularly long axis having periodicity 50 is clearly resolved whole mount preparations. 2. 2.|Optical diffraction analysis indicates that repeat units tubular walls arranged single basic helix probably has about 3.5 per turn (see next paper 1 ). Independent physical data shown enzymatically active dimer two similar subunits. Calculations based on indicate tubule can identified with enzyme. 3. 3.|Electron microscope images samples collected during early stages formation paracrystals suggest sequence self assembly Tubule begins linear aggregation enzyme molecules into short, irregular ribbon-like sheets, one molecular layer thickness; elongate close over which become grouped packed bundles.

参考文章(12)
Evelyn A. Havir, Hadassah Tamir, S. Ratner, Robert C. Warner, BIOSYNTHESIS OF UREA. XI. PREPARATION AND PROPERTIES OF CRYSTALLINE ARGININOSUCCINASE. Journal of Biological Chemistry. ,vol. 240, pp. 3079- 3088 ,(1965) , 10.1016/S0021-9258(18)97289-3
M. Murayama, Molecular Mechanism of Red Cell "Sickling" Science. ,vol. 153, pp. 145- 149 ,(1966) , 10.1126/SCIENCE.153.3732.145
M.F. Moody, Optical diffraction of electron micrographs of argininosuccinase tubules Biochimica et Biophysica Acta (BBA) - Protein Structure. ,vol. 229, pp. 779- 784 ,(1971) , 10.1016/0005-2795(71)90296-0
D. W. Shoeman, J. G. White, G. J. Mannering, Cytochrome P-420: Tubular Aggregates from Hepatic Microsomes Science. ,vol. 165, pp. 1371- 1372 ,(1969) , 10.1126/SCIENCE.165.3900.1371
N.A. Kiselev, C.L. Shpitzberg, B.K. Vainshtein, Crystallization of catalase in the form of tubes with monomolecular walls. Journal of Molecular Biology. ,vol. 25, pp. 433- 441 ,(1967) , 10.1016/0022-2836(67)90196-9
S. Brenner, R.W. Horne, A negative staining method for high resolution electron microscopy of viruses. Biochimica et Biophysica Acta. ,vol. 34, pp. 103- 110 ,(1959) , 10.1016/0006-3002(59)90237-9
Rosalind E. Franklin, A. Klug, The nature of the helical groove on the tobacco mosiac virus particle; x-ray diffraction studies. Biochimica et Biophysica Acta. ,vol. 19, pp. 403- 416 ,(1956) , 10.1016/0006-3002(56)90463-2
N.A. Kiselev, D.J. De Rosier, A. Klug, Structure of the tubes of catalase: analysis of electron micrographs by optical filtering. Journal of Molecular Biology. ,vol. 35, pp. 561- 566 ,(1968) , 10.1016/S0022-2836(68)80014-2
R. C. Valentine, B. M. Shapiro, E. R. Stadtman, Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli Biochemistry. ,vol. 7, pp. 2143- 2152 ,(1968) , 10.1021/BI00846A017
Edward S. Reynolds, THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY Journal of Cell Biology. ,vol. 17, pp. 208- 212 ,(1963) , 10.1083/JCB.17.1.208