Breakdown phenomena in high‐speed dislocations

作者: Y. Y. Earmme , J. H. Weiner

DOI: 10.1063/1.1663291

关键词: Classical mechanicsMotion (geometry)Dislocation velocityDislocationStress levelPhysicsGeneral Physics and Astronomy

摘要: An analytical solution is presented for the atomic displacements in steady motion of a dislocation modified Frenkel‐Kontorova model form treated previously by Atkinson and Cabrera. It found that at critical velocity, here termed breakdown ν B, regular postulated priori breaks down, so not valid velocities ≥ B. Furthermore, B less than corresponding macroscopic sound velocity this model. The results computer‐simulation studies behavior stress levels greater those which cause are also presented.

参考文章(13)
W. N. Bailey, E. C. Titchmarsh, Introduction to the theory of Fourier integrals The Mathematical Gazette. ,vol. 22, pp. 85- ,(1938) , 10.2307/3607457
William D Nix, Theory of Dislocations ,(1968)
H. Bremmer, Balthasar van der Pol, Operational calculus based on the two-sided Laplace integral ,(1950)
Frank Reginald Nunes Nabarro, Theory of crystal dislocations Clarendon Press. ,(1967)
Shunya Ishioka, Steady Motion of a Dislocation in a Lattice Journal of the Physical Society of Japan. ,vol. 34, pp. 462- 469 ,(1973) , 10.1143/JPSJ.34.462
V. Celli, N. Flytzanis, Motion of a Screw Dislocation in a Crystal Journal of Applied Physics. ,vol. 41, pp. 4443- 4447 ,(1970) , 10.1063/1.1658479
J. H. Weiner, Dislocation Velocities in a Linear Chain Physical Review. ,vol. 136, pp. A863- A868 ,(1964) , 10.1103/PHYSREV.136.A863
J. H. Weiner, W. T. Sanders, Peierls Stress and Creep of a Linear Chain Physical Review. ,vol. 134, pp. 1007- 1015 ,(1964) , 10.1103/PHYSREV.134.A1007
W. Atkinson, N. Cabrera, Motion of a Frenkel-Kontorowa Dislocation in a One-Dimensional Crystal Physical Review. ,vol. 138, pp. 763- 766 ,(1965) , 10.1103/PHYSREV.138.A763
W. F. Hartl, J. H. Weiner, Dislocation Velocities in a Two-Dimensional Model Physical Review. ,vol. 152, pp. 634- 644 ,(1966) , 10.1103/PHYSREV.152.634