Steady Motion of a Dislocation in a Lattice

作者: Shunya Ishioka

DOI: 10.1143/JPSJ.34.462

关键词:

摘要: Athermal motion of a dislocation in lattice is studied. Using Nabarro force which represents the anharmonicity potential slip plane, formula describes energy dissipated from moving given. Results computer simulations one-dimensional are analyzed by formula. It shown that there three types motion: (i) emits waves, (ii) displacement field around almost same as static one, (iii) velocity changes remarkably period parameter. The boundaries between velocities these depend strongly on shape and damping waves. continuum approximation justified for second type appears if has large low Peierls stress.

参考文章(8)
N. Flytzanis, V. Celli, Motion of a screw dislocation in a crystal at finite temperature Journal of Applied Physics. ,vol. 43, pp. 3301- 3306 ,(1972) , 10.1063/1.1661711
A. D. Brailsford, Electronic Component of Dislocation Drag in Metals Physical Review. ,vol. 186, pp. 959- 961 ,(1969) , 10.1103/PHYSREV.186.959
V. Celli, N. Flytzanis, Motion of a Screw Dislocation in a Crystal Journal of Applied Physics. ,vol. 41, pp. 4443- 4447 ,(1970) , 10.1063/1.1658479
Shunya Ishioka, Uniform Motion of a Screw Dislocation in a Lattice Journal of the Physical Society of Japan. ,vol. 30, pp. 323- 327 ,(1971) , 10.1143/JPSJ.30.323
J. H. Weiner, W. T. Sanders, Peierls Stress and Creep of a Linear Chain Physical Review. ,vol. 134, pp. 1007- 1015 ,(1964) , 10.1103/PHYSREV.134.A1007
W. Atkinson, N. Cabrera, Motion of a Frenkel-Kontorowa Dislocation in a One-Dimensional Crystal Physical Review. ,vol. 138, pp. 763- 766 ,(1965) , 10.1103/PHYSREV.138.A763
F.R.N. Nabarro, CXXII. The synthesis of elastic dislocation fields Philosophical Magazine Series 1. ,vol. 42, pp. 1224- 1231 ,(1951) , 10.1080/14786444108561379
J. Kratochvíl, V. L. Indenbom, The mobility of a dislocation in the Frenkel-Kontorova model Czechoslovak Journal of Physics. ,vol. 13, pp. 814- 821 ,(1963) , 10.1007/BF01688006