Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model of superconductivity

作者: Qiang Du

DOI: 10.1090/S0025-5718-98-00954-5

关键词: Mathematical physicsNumerical analysisMathematicsFinite difference methodGinzburg–Landau theoryFinite element methodInvariant (physics)SuperconductivityGauge theoryPointwise

摘要: We present here a mathematical analysis of nonstandard difference method for the numerical solution time dependent Ginzburg-Landau models superconductivity. This type has been widely used in simulations behavior superconducting materials. also illustrate some their nice properties such as gauge invariance being retained discrete approximations and order parameter having physically consistent pointwise bound.

参考文章(24)
J. Garner, M. Spanbauer, R. Benedek, Katherine J. Strandburg, S. Wright, P. Plassmann, Critical fields of Josephson-coupled superconducting multilayers. Physical Review B. ,vol. 45, pp. 7973- 7983 ,(1992) , 10.1103/PHYSREVB.45.7973
Stephen L Adler, Tsvi Piran, Relaxation Methods for Gauge Field Equilibrium Equations Reviews of Modern Physics. ,vol. 56, pp. 1- 40 ,(1984) , 10.1103/REVMODPHYS.56.1
Hans G. Kaper, Man Kam Kwong, Vortex configurations in type-II superconducting films Journal of Computational Physics. ,vol. 119, pp. 120- 131 ,(1995) , 10.1006/JCPH.1995.1120
G.W. Crabtree, G.K. Leaf, H.G. Kaper, V.M. Vinokur, A.E. Koshelev, D.W. Braun, D.M. Levine, W.K. Kwok, J.A. Fendrich, Time-dependent Ginzburg-Landau simulations of vortex guidance by twin boundaries Physica C-superconductivity and Its Applications. ,vol. 263, pp. 401- 408 ,(1996) , 10.1016/0921-4534(96)00078-0
Man Kam Kwong, Sweeping algorithms for inverting the discrete Ginzburg-Landau operator Applied Mathematics and Computation. ,vol. 53, pp. 129- 150 ,(1993) , 10.1016/0096-3003(93)90098-Y
Q. Du, M. D. Gunzburger, J. S. Peterson, Solving the Ginzburg-Landau equations by finite-element methods Physical Review B. ,vol. 46, pp. 9027- 9034 ,(1992) , 10.1103/PHYSREVB.46.9027
R. A. Nicolaides, X. Wu, Analysis and convergence of the MAC scheme. II: Navier-Stokes equations Mathematics of Computation. ,vol. 65, pp. 29- 44 ,(1996) , 10.1090/S0025-5718-96-00665-5
San Yih Lin, Yisong Yang, Computation of superconductivity in thin films Journal of Computational Physics. ,vol. 89, pp. 257- 275 ,(1990) , 10.1016/0021-9991(90)90144-P
Michael Tinkham, Introduction to Superconductivity ,(1975)
R. A. Nicolaides, Analysis and convergence of the MAC scheme. I : The linear problem SIAM Journal on Numerical Analysis. ,vol. 29, pp. 1579- 1591 ,(1992) , 10.1137/0729091