Numerical Computation of Quantized Vortices in the Bose-Einstein Condensate

作者: Qiang Du

DOI: 10.1007/978-1-4615-0113-8_11

关键词:

摘要: The theoretical analysis of many recent experimental work on a single component Bose-Einstein condensate has been based the mean-field Gross-Pitaevskii equations. We discuss few algorithms for solving equations and we use them to compute quantized vortices in condensate.

参考文章(32)
J. S. Stießberger, W. Zwerger, Critcal velocity of superfluid flow past large obstacles in Bose-Einstein condensates Physical Review A. ,vol. 62, pp. 061601- ,(2000) , 10.1103/PHYSREVA.62.061601
J. Dalibard, K. W. Madison, W. Wohlleben, F. Chevy, Vortices in a stirred Bose-Einstein condensate Journal of Modern Optics. ,vol. 47, pp. 2715- 2723 ,(2000) , 10.1080/09500340008232191
Rupert Klein, Andrew J. Majda, Self-stretching of perturbed vortex filaments: II. structure of solutions Physica D: Nonlinear Phenomena. ,vol. 53, pp. 267- 294 ,(1991) , 10.1016/0167-2789(91)90066-I
D. A. Butts, D. S. Rokhsar, Predicted signatures of rotating Bose–Einstein condensates Nature. ,vol. 397, pp. 327- 329 ,(1999) , 10.1038/16865
Thomas J. Bridges, Sebastian Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity Physics Letters A. ,vol. 284, pp. 184- 193 ,(2001) , 10.1016/S0375-9601(01)00294-8
F. Dalfovo, L. Pitaevskii, S. Stringari, Order parameter at the boundary of a trapped Bose gas Physical Review A. ,vol. 54, pp. 4213- 4217 ,(1996) , 10.1103/PHYSREVA.54.4213
Q. Du, M. D. Gunzburger, J. S. Peterson, Solving the Ginzburg-Landau equations by finite-element methods Physical Review B. ,vol. 46, pp. 9027- 9034 ,(1992) , 10.1103/PHYSREVB.46.9027
Alexander L. Fetter, David L. Feder, Beyond the Thomas-Fermi approximation for a trapped condensed Bose-Einstein gas Physical Review A. ,vol. 58, pp. 3185- 3194 ,(1998) , 10.1103/PHYSREVA.58.3185
David L. Feder, Charles W. Clark, Barry I. Schneider, Nucleation of Vortex Arrays in Rotating Anisotropic Bose-Einstein Condensates Physical Review A. ,vol. 61, pp. 011601- ,(1999) , 10.1103/PHYSREVA.61.011601