Properties of n -dimensional triangulations

作者: Charles L. Lawson

DOI: 10.1016/0167-8396(86)90001-4

关键词: TessellationConstrained Delaunay triangulationCombinatoricsPitteway triangulationConvex hullPoint set triangulationMinimum-weight triangulationMathematicsDelaunay triangulationTriangulation

摘要: Abstract This paper establishes a number of mathematical results relevant to the problem constructing triangulation, i.e., simplical tessellation convex hull an arbitrary finite set points in n-space. The principal present are 1. (a) A n + 2 n-space may be triangulated at most different ways. 2. (b) ‘sphere test’ defined this selects preferred one these two triangulations. 3. (c) parameters is that permits characterization and enumeration all sets significantly from point view their possible 4. (d) local sphere test induces global property for triangulation. 5. (e) triangulation satisfying dual n-dimensional Dirichlet tessellation, it Delaunay

参考文章(11)
C. L. Lawson, Software for C1 Surface Interpolation Mathematical Software#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, March 28–30, 1977. pp. 161- 194 ,(1977) , 10.1016/B978-0-12-587260-7.50011-X
Robert J. Renka, Interpolation of data on the surface of a sphere ACM Transactions on Mathematical Software. ,vol. 10, pp. 417- 436 ,(1984) , 10.1145/2701.2703
P. J. Green, R. Sibson, Computing Dirichlet Tessellations in the Plane The Computer Journal. ,vol. 21, pp. 168- 173 ,(1978) , 10.1093/COMJNL/21.2.168
R.E. Barnhill, F.F. Little, Three- and four-dimensional surfaces Rocky Mountain Journal of Mathematics. ,vol. 14, pp. 77- 102 ,(1984) , 10.1216/RMJ-1984-14-1-77
R. Sibson, Locally equiangular triangulations The Computer Journal. ,vol. 21, pp. 243- 245 ,(1978) , 10.1093/COMJNL/21.3.243
Hiroshi Akima, A Method of Bivariate Interpolation and Smooth Surface Fitting for Irregularly Distributed Data Points ACM Transactions on Mathematical Software. ,vol. 4, pp. 148- 159 ,(1978) , 10.1145/355780.355786
Charles L. Lawson, $C^1$ surface interpolation for scattered data on a sphere Rocky Mountain Journal of Mathematics. ,vol. 14, pp. 177- 202 ,(1984) , 10.1216/RMJ-1984-14-1-177
A. Bowyer, Computing Dirichlet tessellations The Computer Journal. ,vol. 24, pp. 162- 166 ,(1981) , 10.1093/COMJNL/24.2.162
Robert J. Renka, Algorithm 624: Triangulation and Interpolation at Arbitrarily Distributed Points in the Plane ACM Transactions on Mathematical Software. ,vol. 10, pp. 440- 442 ,(1984) , 10.1145/2701.356108