A proof of Connelly's conjecture on 3-connected circuits of the rigidity matroid

作者: Alex R Berg , Tibor Jordán

DOI: 10.1016/S0095-8956(02)00037-0

关键词: CorollaryMathematicsConjectureMatroidSpecial caseCombinatoricsElectronic circuitDiscrete mathematicsVertex (graph theory)Graph

摘要: A graph G = (V , E) is called a generic circuit if |E| 2|V| - 2 and every X ⊂ V with ≥ |X| |V| 1 satisfies i(X) ≤ 2|X| 3. Here denotes the number of edges induced by X. The operation extension subdivides an edge uw new vertex v adds vz for some z ≠ u, w. Connelly conjectured that 3-connected can be obtained from K4 sequence extensions. We prove this conjecture. As corollary, we also obtain special case conjecture Hendrickson on generically globally rigid graphs.

参考文章(9)
Tiong-Seng Tay, Walter Whiteley, Generating Isostatic Frameworks Université du Québec à Montréal. ,(1985)
András Frank, László Szegő, An Extension of a Theorem of Henneberg and Laman integer programming and combinatorial optimization. pp. 145- 159 ,(2001) , 10.1007/3-540-45535-3_12
David W. Barnette, On Steinitz's theorem concerning convex 3-polytopes and on some properties of planar graphs The Many Facets of Graph Theory. pp. 27- 40 ,(1969) , 10.1007/BFB0060102
Bruce Hendrickson, Conditions for unique graph realizations SIAM Journal on Computing. ,vol. 21, pp. 65- 84 ,(1992) , 10.1137/0221008
Lebrecht Henneberg, Die graphische Statik der starren Systeme Johnson Reprint Corporation. ,(1911)
Tiong-Seng Tay, Linking (n - 2)-dimensional panels inn-space I: (k - 1,k)-graphs and (k - 1,k)-frames Graphs and Combinatorics. ,vol. 7, pp. 289- 304 ,(1991) , 10.1007/BF01787636
Robert Connelly, None, Rigidity and Energy Inventiones Mathematicae. ,vol. 66, pp. 11- 33 ,(1982) , 10.1007/BF01404753
G. Laman, On graphs and rigidity of plane skeletal structures Journal of Engineering Mathematics. ,vol. 4, pp. 331- 340 ,(1970) , 10.1007/BF01534980
Walter Whiteley, Matroid Applications: Matroids and Rigid Structures Cambridge University Press. pp. 1- 53 ,(1992) , 10.1017/CBO9780511662041.002