Linking (n - 2)-dimensional panels inn-space I: (k - 1,k)-graphs and (k - 1,k)-frames

作者: Tiong-Seng Tay

DOI: 10.1007/BF01787636

关键词:

摘要: A (k - 1,k)-graph is a multi-graph satisfyinge' ≤ 1)v' k for every non-empty subset ofe' edges onv' vertices, with equality whene' = |E(G)|. 1,k)-frame structure generalizing an (n 2, 2)-framework inn-space, consisting of set 2)-dimensional bodies inn-space and rigid bars each joining pair using ball joints. We prove that graph the minimally (with respect to edges) if only it 1,k)-graph. Rigidity here means infinitesimal rigidity or equivalently statical rigidity.

参考文章(8)
Tiong-Seng Tay, Walter Whiteley, Generating Isostatic Frameworks Université du Québec à Montréal. ,(1985)
Herman Gluck, Almost all simply connected closed surfaces are rigid Lecture Notes in Mathematics. pp. 225- 239 ,(1975) , 10.1007/BFB0066118
Tiong-Seng Tay, Walter Whiteley, Recent Advances in the Generic Ridigity of Structures Université du Québec à Montréal. ,(1984)
Walter Whiteley, Henry Crapo, Statics of Frameworks and Motions of Panel Structures: A projective Geometric Introduction Université du Québec à Montréal. ,(1982)
Lebrecht Henneberg, Die graphische Statik der starren Systeme Johnson Reprint Corporation. ,(1911)
C. St.J. A. Nash-Williams, Edge-Disjoint Spanning Trees of Finite Graphs Journal of the London Mathematical Society. ,vol. s1-36, pp. 445- 450 ,(1961) , 10.1112/JLMS/S1-36.1.445
Tiong-Seng Tay, Rigidity of multi-graphs. I. Linking rigid bodies in n-space Journal of Combinatorial Theory, Series B. ,vol. 36, pp. 95- 112 ,(1984) , 10.1016/0095-8956(84)90016-9