Bayesian Age-Period-Cohort Model of Lung Cancer Mortality

作者: Chris P. Tsokos , Ram C. Kafle , Bhikhari P. Tharu

DOI: 10.2427/11444

关键词: Lung cancerPoisson regressionMedicineDemographySmoking cessationCalendar periodPopulationMortality rateBayesian probabilityStatisticsAge period cohort

摘要: Background The objective of this study was to analyze the time trend for lung cancer mortality in population USA by 5 years based on most recent available data namely 2010. knowledge rates temporal trends is necessary understand burden. Methods Bayesian Age-Period-Cohort model fitted using Poisson regression with histogram smoothing prior decompose age at death, period and birth-cohort. Results Mortality from increased more rapidly 52 years. It ended up 325 deaths annually 82 average. younger cohorts lower than older cohorts. risk lowered 1993 periods. Conclusions capable explaining rate cancer. reduction carcinogens cigarettes increase smoking cessation around 1960 might led decreasing after calendar 1993.

参考文章(35)
Michael P. Sherman, Ernesto E. Aeberhard, Vivian Z. Wong, Michael S. Simmons, Michael D. Roth, Donald P. Tashkin, Effects of smoking marijuana, tobacco or cocaine alone or in combination on DNA damage in human alveolar macrophages. Life Sciences. ,vol. 56, pp. 2201- 2207 ,(1995) , 10.1016/0024-3205(95)00208-N
B. Carstensen, Age-period-cohort models for the Lexis diagram. Statistics in Medicine. ,vol. 26, pp. 3018- 3045 ,(2007) , 10.1002/SIM.2764
Carlo Berzuini, David Clayton, Bayesian analysis of survival on multiple time scales Statistics in Medicine. ,vol. 13, pp. 823- 838 ,(1994) , 10.1002/SIM.4780130804
A. Jemal, K. C. Chu, R. E. Tarone, Recent Trends in Lung Cancer Mortality in the United States JNCI Journal of the National Cancer Institute. ,vol. 93, pp. 277- 283 ,(2001) , 10.1093/JNCI/93.4.277
Willi Oberaigner, Uwe Siebert, Wolfgang Horninger, Helmut Klocker, Jasmin Bektic, Georg Schäfer, Ferdinand Frauscher, Harald Schennach, Georg Bartsch, Prostate-specific antigen testing in Tyrol, Austria: prostate cancer mortality reduction was supported by an update with mortality data up to 2008 International Journal of Public Health. ,vol. 57, pp. 57- 62 ,(2012) , 10.1007/S00038-011-0266-4
Eva Negri, Carlo La Vecchia, Fabio Levi, Alex Randriamiharisoa, Adriano Decarli, Peter Boyle, The application of age, period and cohort models to predict Swiss cancer mortality. Journal of Cancer Research and Clinical Oncology. ,vol. 116, pp. 207- 214 ,(1990) , 10.1007/BF01612679
N. E. Breslow, D. G. Clayton, Approximate inference in generalized linear mixed models Journal of the American Statistical Association. ,vol. 88, pp. 9- 25 ,(1993) , 10.1080/01621459.1993.10594284
Tadeusz Dyba, Timo Hakulinen, Lassi Päivärinta, A simple non‐linear model in incidence prediction Statistics in Medicine. ,vol. 16, pp. 2297- 2309 ,(1997) , 10.1002/(SICI)1097-0258(19971030)16:20<2297::AID-SIM668>3.0.CO;2-F
C. C. Brown, L. G. Kessler, Projections of Lung Cancer Mortality in the United States: 1985-20251 JNCI Journal of the National Cancer Institute. ,vol. 80, pp. 43- 51 ,(1988) , 10.1093/JNCI/80.1.43