Photoluminescence quenching of a low-pressure metal-organic vapor-phase-epitaxy grown quantum dots array with bimodal inhomogeneous broadening

作者: G. Saint-Girons , I. Sagnes

DOI: 10.1063/1.1481968

关键词: Quantum dotOptoelectronicsPhase (matter)Rate equationPopulationMaterials scienceGallium arsenidePhotoluminescenceEpitaxyCharge carrier

摘要: The photoluminescence (PL) behavior of a bimodal In(Ga)As/GaAs quantum dots (QDs) array grown by low-pressure metal-organic-vapor-phase-epitaxy is studied as function the temperature. PL quenching attributed to thermal escape charge carriers out QDs for high-energy emitting population, and presence nonradiative defects in immediate vicinity lower-energy population. intensity both population investigated, experimental results are fitted with help rate equations model. mechanisms activation energies found be about 180 40 meV high- low-energy respectively. A transfer mechanism between two populations also evidenced, discussed terms laser applications.

参考文章(18)
C. M. A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, P. N. Brunkov, B. V. Volovik, S. G. Konnikov, A. R. Kovsh, V. M. Ustinov, Hole and electron emission from InAs quantum dots Applied Physics Letters. ,vol. 76, pp. 1573- 1575 ,(2000) , 10.1063/1.126099
M. Asada, Y. Miyamoto, Y. Suematsu, Gain and the threshold of three-dimensional quantum-box lasers IEEE Journal of Quantum Electronics. ,vol. 22, pp. 1915- 1921 ,(1986) , 10.1109/JQE.1986.1073149
J. Bloch, J. Shah, W. S. Hobson, J. Lopata, S. N. G. Chu, Room-temperature 1.3 μm emission from InAs quantum dots grown by metal organic chemical vapor deposition Applied Physics Letters. ,vol. 75, pp. 2199- 2201 ,(1999) , 10.1063/1.124963
Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jiang, X. L. Ye, Z. G. Wang, Thermal redistribution of photocarriers between bimodal quantum dots Journal of Applied Physics. ,vol. 90, pp. 1973- 1976 ,(2001) , 10.1063/1.1385579
C. Walther, J. Bollmann, H. Kissel, H. Kirmse, W. Neumann, W. T. Masselink, Characterization of electron trap states due to InAs quantum dots in GaAs Applied Physics Letters. ,vol. 76, pp. 2916- 2918 ,(2000) , 10.1063/1.126516
C. Lobo, N. Perret, D. Morris, J. Zou, D. J. H. Cockayne, M. B. Johnston, M. Gal, R. Leon, Carrier capture and relaxation in Stranski-KrastanowInxGa1−xAs/GaAs(311)Bquantum dots Physical Review B. ,vol. 62, pp. 2737- 2742 ,(2000) , 10.1103/PHYSREVB.62.2737
A. E. Belyaev, S. T. Stoddart, P. M. Martin, P. C. Main, L. Eaves, M. Henini, Positively charged defects associated with self-assembled quantum dot formation Applied Physics Letters. ,vol. 76, pp. 3570- 3572 ,(2000) , 10.1063/1.126709
K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Jandke, P. Strohriegl, Highly polarized blue electroluminescence from homogeneously aligned films of poly(9,9-dioctylfluorene) Applied Physics Letters. ,vol. 76, pp. 2946- 2948 ,(2000) , 10.1063/1.126525
G. Saint-Girons, G. Patriarche, A. Mereuta, I. Sagnes, Origin of the bimodal distribution of low-pressure metal-organic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots Journal of Applied Physics. ,vol. 91, pp. 3859- 3863 ,(2002) , 10.1063/1.1448887
A. Patanè, M. Grassi Alessi, F. Intonti, A. Polimeni, M. Capizzi, F. Martelli, M. Geddo, A. Bosacchi, S. Franchi, Evolution of the optical properties of InAs/GaAs quantum dots for increasing InAs coverages Physica Status Solidi (a). ,vol. 164, pp. 493- 497 ,(1997) , 10.1002/1521-396X(199711)164:1<493::AID-PSSA493>3.0.CO;2-D