High-resolution materials characterization by conventional and near-field acoustic microscopy

作者: S. Hirsekorn , W. Arnold

DOI: 10.1016/S0041-624X(97)00062-0

关键词: Specular reflectionCharacterization (materials science)Image resolutionUltrasonic sensorScanning acoustic microscopeReflection (physics)WavelengthAcoustic microscopyOpticsMaterials science

摘要: Abstract Acoustic microscopy not only allows imaging of sample surfaces with high spatial resolution but also can be exploited to determine quantitatively surface properties. The scanning acoustic microscope (SAM) uses focused waves within a frequency range 100 MHz–2 GHz which yields few μm limited by the wavelength ultrasound. Quantitative determination elastic properties done evaluating measured material signatures in reflection, so-called V(z) curves, and calibrated measurements maximum amplitude specular reflection. Both methods are based on theoretical calculations ultrasonic reflection at special reference applicability these is shown experimentally. fact that detected tip an atomic force (AFM) for lateral given sensor diameter about 10 nm much smaller than wavelength. evaluation AFM images elastic, anelastic adhesive requires description calculation transfer vibrations from insonified AFM-cantilever if its contact surface, together some experimental results discussed this contribution.

参考文章(12)
U. Rabe, K. Janser, W. Arnold, Vibrations of free and surface‐coupled atomic force microscope cantilevers: Theory and experiment Review of Scientific Instruments. ,vol. 67, pp. 3281- 3293 ,(1996) , 10.1063/1.1147409
S. Hirsekorn, S. Pangraz, G. Weides, W. Arnold, Measurement of elastic impedance with high spatial resolution using acoustic microscopy Applied Physics Letters. ,vol. 67, pp. 745- 747 ,(1995) , 10.1063/1.115212
U. Rabe, W. Arnold, Acoustic microscopy by atomic force microscopy Applied Physics Letters. ,vol. 64, pp. 1493- 1495 ,(1994) , 10.1063/1.111869
S. Hirsekorn, S. Pangraz, G. Weides, W. Arnold, Erratum: ‘‘Measurement of elastic impedance with high spatial resolution using acoustic microscopy’’ [Appl. Phys. Lett. 67, 745 (1995)] Applied Physics Letters. ,vol. 69, pp. 2138- 2138 ,(1996) , 10.1063/1.118156
B. Cretin, F. Sthal, Scanning Microdeformation Microscopy Applied Physics Letters. ,vol. 62, pp. 829- 831 ,(1993) , 10.1063/1.108592
M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, Probe‐surface interaction in near‐field optical microscopy: The nonlinear bending force mechanism Applied Physics Letters. ,vol. 68, pp. 307- 309 ,(1996) , 10.1063/1.116068
Kazushi Yamanaka, Hisato Ogiso, Oleg Kolosov, Ultrasonic force microscopy for nanometer resolution subsurface imaging Applied Physics Letters. ,vol. 64, pp. 178- 180 ,(1994) , 10.1063/1.111524
S. Hirsekorn, S. Pangraz, Materials characterization with the acoustic microscope Applied Physics Letters. ,vol. 64, pp. 1632- 1634 ,(1994) , 10.1063/1.111836
NA Burnham, AJ Kulik, G Gremaud, PJ Gallo, F Oulevey, Scanning local-acceleration microscopy Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. ,vol. 14, pp. 794- 799 ,(1996) , 10.1116/1.588715