High temperature operation of a solid polymer electrolyte fuel cell stack based on a new ionomer membrane

作者: A. S. Aricò , A. Di Blasi , G. Brunaccini , F. Sergi , G. Dispenza

DOI: 10.1002/FUCE.201000031

关键词: ElectrolyteElectrochemistryAtmospheric temperature rangeStack (abstract data type)Proton exchange membrane fuel cellMembranePolymer chemistryMaterials scienceChemical engineeringPolymerPower density

摘要: Polymer electrolyte fuel cell stacks assembled with Johnson Matthey Fuel Cells and SolviCore MEAs based on the Aquivion™ E79-03S short-side chain (SSC), chemically stabilised perfluorosulphonic acid membrane developed by Solvay Solexis were investigated at CNR-ITAE in EU Sixth Framework ‘Autobrane' project. Electrochemical experiments short performed under practical automotive operating conditions pressures of 1–1.5 bar abs. over a wide temperature range, up to 130 °C, varying levels humidity (down 18% R. H.). The using large area (360 cm2) showed elevated performance range from ambient 100 °C (cell power density 600–700 mWcm–2) moderate decrease above 100 °C. performances electrical efficiencies achieved 110 °C about 400 mWcm–2 an average voltage 0.5–0.6 V) are promising for applications. Duty-cycle steady-state galvanostatic excellent stack stability operation high temperature. A comparison AquivionTM NafionTM-based significantly better capability sustain operation.

参考文章(39)
Jiangtao Wang, S. Wasmus, R. F. Savinell, Evaluation of Ethanol, 1‐Propanol, and 2‐Propanol in a Direct Oxidation Polymer‐Electrolyte Fuel Cell A Real‐Time Mass Spectrometry Study Journal of The Electrochemical Society. ,vol. 142, pp. 4218- 4224 ,(1995) , 10.1149/1.2048487
Masanobu Wakizoe, Omourtag A. Velev, Supramaniam Srinivasan, Analysis of proton exchange membrane fuel cell performance with alternate membranes Electrochimica Acta. ,vol. 40, pp. 335- 344 ,(1995) , 10.1016/0013-4686(94)00269-7
Leonard J. Bonville, H. Russell Kunz, Ying Song, Anthony Mientek, Minkmas Williams, Albert Ching, James M. Fenton, Development and demonstration of a higher temperature PEM fuel cell stack Journal of Power Sources. ,vol. 144, pp. 107- 112 ,(2005) , 10.1016/J.JPOWSOUR.2004.12.056
G Alberti, M Casciola, Layered metalIV phosphonates, a large class of inorgano-organic proton conductors Solid State Ionics. ,vol. 97, pp. 177- 186 ,(1997) , 10.1016/S0167-2738(97)00070-2
Chaojie Song, Yanghua Tang, Jian Lu Zhang, Jiujun Zhang, Haijiang Wang, Jun Shen, Scott McDermid, Jing Li, Paul Kozak, None, PEM fuel cell reaction kinetics in the temperature range of 23–120 °C Electrochimica Acta. ,vol. 52, pp. 2552- 2561 ,(2007) , 10.1016/J.ELECTACTA.2006.09.008
A. Ghielmi, P. Vaccarono, C. Troglia, V. Arcella, Proton exchange membranes based on the short-side-chain perfluorinated ionomer Journal of Power Sources. ,vol. 145, pp. 108- 115 ,(2005) , 10.1016/J.JPOWSOUR.2004.12.068
Ph. Moçotéguy, B. Ludwig, J. Scholta, R. Barrera, S. Ginocchio, Long Term Testing in Continuous Mode of HT‐PEMFC Based H3PO4/PBI Celtec‐P MEAs for μ‐CHP Applications Fuel Cells. ,vol. 9, pp. 325- 348 ,(2009) , 10.1002/FUCE.200800134
Sanggyu Kang, Kyoungdoug Min, Fabian Mueller, Jacob Brouwer, Configuration effects of air, fuel, and coolant inlets on the performance of a proton exchange membrane fuel cell for automotive applications International Journal of Hydrogen Energy. ,vol. 34, pp. 6749- 6764 ,(2009) , 10.1016/J.IJHYDENE.2009.06.049
N. Gourdoupi, K. Papadimitriou, S. Neophytides, J. K. Kallitsis, New High Temperature Polymer Electrolyte Membranes. Influence of the Chemical Structure on their Properties Fuel Cells. ,vol. 8, pp. 200- 208 ,(2008) , 10.1002/FUCE.200800008
C Hasiotis, V Deimede, C Kontoyannis, New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole Electrochimica Acta. ,vol. 46, pp. 2401- 2406 ,(2001) , 10.1016/S0013-4686(01)00437-6