The maximum resource bin packing problem

作者: Joan Boyar , Leah Epstein , Lene M Favrholdt , Jens S Kohrt , Kim S Larsen

DOI: 10.1007/11537311_35

关键词: Approximation algorithmCombinatoricsCompetitive analysisBest bin firstBin packing problemParameterized complexityMathematicsBinIntegerUpper and lower bounds

摘要: Usually, for bin packing problems, we try to minimize the number of bins used or in case dual problem, maximize total size accepted items. This paper presents results opposite where would like We consider off-line and on-line variants problems. For variant, require that there be an ordering bins, so no item a later fits earlier bin. find approximation ratios two natural algorithms, First-Fit-Increasing First-Fit-Decreasing maximum resource variant classical packing. For define packing. For packing, algorithm is competitive. competitive ratio various algorithms. We study general versions problems as well parameterized upper bound $\frac{1}{k}$ on sizes, some integer k.

参考文章(19)
J. Csirik, M. Labbé, S. Zhang, J. B. G. Frenk, Two simple algorithms for bin covering Acta Cybernetica. ,vol. 14, pp. 13- 25 ,(1999)
Joan Boyar, Lene M. Favrholdt, The relative worst order ratio for on-line algorithms international conference on algorithms and complexity. pp. 58- 69 ,(2003) , 10.1007/3-540-44849-7_13
Ran El-Yaniv, Allan Borodin, Online Computation and Competitive Analysis ,(1998)
Leah Epstein, Meital Levy, Online interval coloring and variants international colloquium on automata languages and programming. pp. 602- 613 ,(2005) , 10.1007/11523468_49
Esther M. Arkin, Michael A. Bender, Joseph S.B. Mitchell, Steven S. Skiena, The Lazy Bureaucrat scheduling problem Information & Computation. ,vol. 184, pp. 129- 146 ,(2003) , 10.1016/S0890-5401(03)00060-9
Janos Csirik, Claire Kenyon, David S. Johnson, Better approximation algorithms for bin covering symposium on discrete algorithms. pp. 557- 566 ,(2001) , 10.5555/365411.365533
D. Karger, R. Motwani, G. D. S. Ramkumar, On approximating the longest path in a graph Algorithmica. ,vol. 18, pp. 82- 98 ,(1997) , 10.1007/BF02523689
Richard E. Ladner, Tami Tamir, Amotz Bar-Noy, Windows scheduling as a restricted version of Bin Packing symposium on discrete algorithms. pp. 224- 233 ,(2004) , 10.5555/982792.982824