Better approximation algorithms for bin covering

作者: Janos Csirik , Claire Kenyon , David S. Johnson

DOI: 10.5555/365411.365533

关键词:

摘要: Bin covering takes as input a list of items with sizes in (0, 1) and places them into bins unit demand so to maximize the number whose is satisfied. This sense dual problem classical one-dimensional bin packing problem, but has for many years lagged behind latter terms quality best approximation algorithms. We design algorithms this that close gap, both worst- average-case results. present (1) first asymptotic scheme offline version, (2) have bounded worst-case behavior instances discrete item expected asymptotically optimal all “perfect-packing distributions” (ones which packings sublinear waste), (3) learning algorithm distributions. The are based on recently-developed online Sum-of-Squares packing. also experimental analysis comparing suggesting one them, Sum-of-Squares-with-Threshold algorithm, performs quite well even distributions do not perfect-packing property.

参考文章(11)
Janos Csirik, David S. Johnson, Claire Kenyon, Peter W. Shor, Richard R. Weber, A Self Organizing Bin Packing Heuristic algorithm engineering and experimentation. pp. 246- 265 ,(1999) , 10.1007/3-540-48518-X_15
Lyle A. McGeoch, Mihalis Yannakakis, Costas A. Courcoubetis, Peter W. Shor, Michael Randolph Garey, Richard R. Weber, David S. Johnson, E. G. Coffman, Fundamental discrepancies between average-case analyses under discrete and continuous distributions ,(1991)
E. G. Coffman, C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor, R. R. Weber, M. Yannakakis, Bin Packing with Discrete Item Sizes, Part I: Perfect Packing Theorems and the Average Case Behavior of Optimal Packings SIAM Journal on Discrete Mathematics. ,vol. 13, pp. 384- 402 ,(2000) , 10.1137/S0895480197325936
S.F Assmann, D.S Johnson, D.J Kleitman, J.Y.-T Leung, On a dual version of the one-dimensional bin packing problem Journal of Algorithms. ,vol. 5, pp. 502- 525 ,(1984) , 10.1016/0196-6774(84)90004-X
WanSoo T. Rhee, A note for optimal bin packing and optimal bin covering with items of random size SIAM Journal on Computing. ,vol. 19, pp. 705- 710 ,(1990) , 10.1137/0219048
Michael Mitzenmacher, Susanne Albers, Average-case analyses of first fit and random fit bin packing symposium on discrete algorithms. pp. 290- 299 ,(1998) , 10.5555/314613.314718
Sunan Han, Dawei Hong, Joseph Y-T. Leung, Probabilistic analysis of a bin covering algorithm Operations Research Letters. ,vol. 18, pp. 193- 199 ,(1996) , 10.1016/0167-6377(95)00053-4
WanSoo T. Rhee, Michel Talagrand, Optimal bin covering with items of random size SIAM Journal on Computing. ,vol. 18, pp. 487- 498 ,(1989) , 10.1137/0218034
Coastas Courcobetis, Richard Weber, STABILITY OF ON-LINE BIN PACKING WITH RANDOM ARRIVALS AND LONG-RUN-AVERAGE CONSTRAINTS Probability in the Engineering and Informational Sciences. ,vol. 4, pp. 447- 460 ,(1990) , 10.1017/S0269964800001753
J Csirik, J.B.G Frenk, G Galambos, A.H.G Rinnooy Kan, Probabilistic analysis of algorithms for dual bin packing problems Journal of Algorithms. ,vol. 12, pp. 189- 203 ,(1991) , 10.1016/0196-6774(91)90001-F