Encoding of configural regularity in the human visual system

作者: J. Kubilius , J. Wagemans , H. P. Op de Beeck

DOI: 10.1167/14.9.11

关键词: MathematicsMultivoxel pattern analysisFunctional magnetic resonance imagingVisual processingArtificial intelligenceVisual information processingPattern recognitionVisual memorySignal strengthNeuroscienceHuman visual system modelStimulus (physiology)

摘要: The visual system is very efficient in encoding stimulus properties by utilizing available regularities the inputs. To explore underlying strategies during information processing, we presented participants with two-line configurations that varied amount of configural regularity (or degrees freedom relative positioning two lines) a fMRI experiment. Configural ranged from generic configuration to stimuli resembling an "L" (i.e., right-angle L-junction), "T" midpoint T-junction), or "+",-the latter being most regular stimulus. We found response strength shape-selective lateral occipital area was consistently lower for higher degree stimuli. In second experiment, using multivoxel pattern analysis, further show encoded terms signal but not distributed responses. Finally, results these experiments could be accounted low-level and are distinct norm-based encoding. Our suggest plays important role ventral processing stream.

参考文章(55)
Peter A. van der Helm, Emanuel Leeuwenberg, Structural Information Theory: The Simplicity of Visual Form ,(2012)
RB Tootell, JB Reppas, KK Kwong, R Malach, RT Born, TJ Brady, BR Rosen, JW Belliveau, Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging The Journal of Neuroscience. ,vol. 15, pp. 3215- 3230 ,(1995) , 10.1523/JNEUROSCI.15-04-03215.1995
Jacob Feldman, Perceptual Grouping by Selection of a Logically Minimal Model International Journal of Computer Vision. ,vol. 55, pp. 5- 25 ,(2003) , 10.1023/A:1024454423670
J. Feldman, Constructing perceptual categories computer vision and pattern recognition. pp. 244- 250 ,(1992) , 10.1109/CVPR.1992.223268
David A. Leopold, Alice J. O'Toole, Thomas Vetter, Volker Blanz, Prototype-referenced shape encoding revealed by high-level aftereffects Nature Neuroscience. ,vol. 4, pp. 89- 94 ,(2001) , 10.1038/82947
Jonathan W. Peirce, PsychoPy--Psychophysics software in Python. Journal of Neuroscience Methods. ,vol. 162, pp. 8- 13 ,(2007) , 10.1016/J.JNEUMETH.2006.11.017
Ori Amir, Irving Biederman, Kenneth J. Hayworth, The neural basis for shape preferences. Vision Research. ,vol. 51, pp. 2198- 2206 ,(2011) , 10.1016/J.VISRES.2011.08.015
Jonas Kubilius, A framework for streamlining research workflow in neuroscience and psychology. Frontiers in Neuroinformatics. ,vol. 7, pp. 52- 52 ,(2014) , 10.3389/FNINF.2013.00052