Dyck's surfaces, systoles, and capacities

作者: Mikhail G. Katz , Stéphane Sabourau

DOI: 10.1090/S0002-9947-2014-06216-8

关键词: MathematicsGravitational singularityMathematical analysisConical surfaceSurface (mathematics)Riemann surface

摘要: We prove an optimal systolic inequality for nonpositively curved Dyck's surfaces. The extremal surface is flat with eight conical singularities, six of angle theta and two 9pi - theta, a suitable cos(theta) in Q(sqrt{19}). Relying on some delicate capacity estimates, we also show that the not conformally equivalent to hyperbolic maximal systole, yielding first example extremality this behavior.

参考文章(26)
Mikhael Gromov, Misha Katz, Pierre Pansu, Stephen Semmes, None, Metric Structures for Riemannian and Non-Riemannian Spaces ,(1999)
Peter Buser, Peter Sarnak, None, On the period matrix of a Riemann surface of large genus (with an Appendix by J.H. Conway and N.J.A. Sloane) Inventiones Mathematicae. ,vol. 117, pp. 27- 56 ,(1994) , 10.1007/BF01232233
Mikhail Gersh Katz, Systolic geometry and topology ,(2007)
S. Ivanov, D. Burago, Riemannian tori without conjugate points are flat Geometric and Functional Analysis. ,vol. 4, pp. 259- 269 ,(1994) , 10.1007/BF01896241
Hugo Parlier, Fixed point free involutions on Riemann surfaces Israel Journal of Mathematics. ,vol. 166, pp. 297- 311 ,(2008) , 10.1007/S11856-008-1032-Z
P. M. Pu, Some inequalities in certain nonorientable Riemannian manifolds. Pacific Journal of Mathematics. ,vol. 2, pp. 55- 71 ,(1952) , 10.2140/PJM.1952.2.55
D. Burago, S. Ivanov, On asymptotic volume of tori Geometric and Functional Analysis. ,vol. 5, pp. 800- 808 ,(1995) , 10.1007/BF01897051
P. Schmutz, Reimann surfaces with shortest geodesic of maximal length Geometric and Functional Analysis. ,vol. 3, pp. 564- 631 ,(1993) , 10.1007/BF01896258