Determination of fat content in UHT milk by electroanalytical method

作者: Shilin Wu , Yamei Jin , Na Yang , Xueming Xu , Zhengjun Xie

DOI: 10.1016/J.FOODCHEM.2018.07.119

关键词: Linear correlationOpen-circuit voltageChromatographyElectromagnetic coilFat contentElectroanalytical methodChemistryMilk fatPhase differencePotential differenceFood scienceAnalytical chemistryGeneral Medicine

摘要: Abstract An electroanalytical method was proposed to determine fat content in ultrahigh-temperature (UHT) processed milk by magnetoelectric induction. In the technique, involves induction of a controllable voltage (potential difference, Ubc) UHT milk, with differential magnetic fluxes as stimulus. Results indicated that Ubc increased an increase ratio difference between primary coil 1 and 2. Variation induced change Ubc. A reduction led λ-value (ratio Uab excitation voltage) under specific conditions. For calibration verification, high linear correlation coefficient (R2 = 0.9428) low root–mean–square error cross-validation (0.342 g/100 g) were observed at 20 V 700 Hz open circuit 14:56. Measurement sensitivity improved sample coils.

参考文章(25)
Mohadeseh Sharifi, Brent Young, Milk total solids and fat content soft sensing via electrical resistance tomography and temperature measurement Food and Bioproducts Processing. ,vol. 90, pp. 659- 666 ,(2012) , 10.1016/J.FBP.2012.05.001
R.M. El-Abassy, P.J. Eravuchira, P. Donfack, B. von der Kammer, A. Materny, Fast determination of milk fat content using Raman spectroscopy Vibrational Spectroscopy. ,vol. 56, pp. 3- 8 ,(2011) , 10.1016/J.VIBSPEC.2010.07.001
Ryszard Żywica, Joanna K. Banach, Katarzyna Kiełczewska, An attempt of applying the electrical properties for the evaluation of milk fat content of raw milk Journal of Food Engineering. ,vol. 111, pp. 420- 424 ,(2012) , 10.1016/J.JFOODENG.2012.01.025
Marios Sophocleous, John K. Atkinson, A novel thick-film electrical conductivity sensor suitable for liquid and soil conductivity measurements Sensors and Actuators B-chemical. ,vol. 213, pp. 417- 422 ,(2015) , 10.1016/J.SNB.2015.02.110
A. Farahi, L. El Gaini, M. Achak, S. El Yamani, M.A. El Mhammedi, M. Bakasse, Interaction study of paraquat and silver electrode using electrochemical impedance spectroscopy: Application in milk and tomato samples Food Control. ,vol. 47, pp. 679- 685 ,(2015) , 10.1016/J.FOODCONT.2014.08.005
Allie M. Metcalfe, Douglas L. Marshall, Capacitance method to determine the microbiological quality of raw shrimp (Penaeus setiferus) Food Microbiology. ,vol. 21, pp. 361- 364 ,(2004) , 10.1016/J.FM.2003.09.002
Christopher N.G. Scotter, Non-destructive spectroscopic techniques for the measurement of food quality Trends in Food Science and Technology. ,vol. 8, pp. 285- 292 ,(1997) , 10.1016/S0924-2244(97)01053-4
Tjaša Prevc, Nataša Šegatin, Polonca Kralj, Nataša Poklar Ulrih, Blaž Cigić, Influence of metal ions and phospholipids on electrical properties: A case study on pumpkin seed oil Food Control. ,vol. 54, pp. 287- 293 ,(2015) , 10.1016/J.FOODCONT.2015.01.040
M.F. Mabrook, M.C. Petty, Application of electrical admittance measurements to the quality control of milk Sensors and Actuators B-chemical. ,vol. 84, pp. 136- 141 ,(2002) , 10.1016/S0925-4005(02)00014-X