Bioactive composites fabricated by freezing‐thawing method for bone regeneration applications

作者: Maria Canillas , Gabriel G. de Lima , Miguel A. Rodríguez , Michael J. D. Nugent , Declan M. Devine

DOI: 10.1002/POLB.23974

关键词: SwellingComposite materialComposite numberBone regenerationPolymerSelf-healing hydrogelsMaterials scienceWollastoniteCeramicBuffer solution

摘要: Hydrogels are widely used for controlled delivery of therapeutic agents. However, hydrogels lack bioactivity to encourage bone formation and mechanical integrity. Moreover, chemically crosslinked exhibit cytotoxic effect. To overcome these limitations poly-vinyl alcohol (PVA) poly-acrylic acid (PAA) blends were combined with ceramic materials based on β tricalcium phosphate, wollastonite, magnesium silicate different pore size distributions. The final 3D matrix was physically using various freeze thawing (F/T) cycles. FTIR SEM analysis showed that ceramics dispersed within the polymer formed hydrogen bonds. Swelling studies in buffer solution pH 7.4 an increase swelling when added. Furthermore, rheological testing demonstrated incorporation caused properties which varies distributions grains DSC thermograms increased Tg values samples containing ceramics. Antimicrobial activity ciprofloxacin tested against a pathogen associated osteomyelitis presented positive results ciprofloxacin. combination strength ability encapsulate clinically relevant antimicrobial agent indicates composite this study has potential treatment osteomyelitis. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Phys. 2016, 54, 761–773

参考文章(63)
M. Suzuki, O. Hirasa, An approach to artificial muscle using polymer gels formed by micro-phase separation Springer, Berlin, Heidelberg. pp. 241- 261 ,(1993) , 10.1007/BFB0021135
Wankei Wan, A. Dawn Bannerman, Lifang Yang, Helium Mak, Poly(Vinyl Alcohol) Cryogels for Biomedical Applications Springer, Cham. pp. 283- 321 ,(2014) , 10.1007/978-3-319-05846-7_8
Punyavee Kerativitayanan, James K. Carrow, Akhilesh K. Gaharwar, Nanomaterials for Engineering Stem Cell Responses Advanced Healthcare Materials. ,vol. 4, pp. 1600- 1627 ,(2015) , 10.1002/ADHM.201500272
P. D. Costantino, C. D. Friedman, K. Jones, L. C. Chow, H. J. Pelzer, G. A. Sisson, Hydroxyapatite Cement: I. Basic Chemistry and Histologic Properties Archives of Otolaryngology-head & Neck Surgery. ,vol. 117, pp. 379- 384 ,(1991) , 10.1001/ARCHOTOL.1991.01870160033004
R MURUGAN, S RAMAKRISHNA, Development of nanocomposites for bone grafting Composites Science and Technology. ,vol. 65, pp. 2385- 2406 ,(2005) , 10.1016/J.COMPSCITECH.2005.07.022
Shuichi Matsumura, Noriyasu Tomizawa, Atsuko Toki, Kimihito Nishikawa, Kazunobu Toshima, Novel Poly(vinyl alcohol)-Degrading Enzyme and the Degradation Mechanism Macromolecules. ,vol. 32, pp. 7753- 7761 ,(1999) , 10.1021/MA990727B
Jobin Jose, Farrukh Shehzad, Mamdouh A. Al-Harthi, Preparation method and physical, mechanical, thermal characterization of poly(vinyl alcohol)/poly(acrylic acid) blends Polymer Bulletin. ,vol. 71, pp. 2787- 2802 ,(2014) , 10.1007/S00289-014-1221-3
John A. Killion, Luke M. Geever, Declan M. Devine, Hugh Farrell, Clement L. Higginbotham, Compressive Strength and Bioactivity Properties of Photopolymerizable Hybrid Composite Hydrogels for Bone Tissue Engineering International Journal of Polymeric Materials. ,vol. 63, pp. 641- 650 ,(2014) , 10.1080/00914037.2013.854238
Declan M. Devine, Clement L. Higginbotham, The synthesis of a physically crosslinked NVP based hydrogel Polymer. ,vol. 44, pp. 7851- 7860 ,(2003) , 10.1016/J.POLYMER.2003.10.017
J. J. Maurer, D. J. Eustace, C. T. Ratcliffe, Thermal characterization of poly(acrylic acid) Macromolecules. ,vol. 20, pp. 196- 202 ,(1987) , 10.1021/MA00167A035