Semiparametric and nonparametric methods in data mining and statistical learning with applications in public health surveillance and personalized medicine

作者: Yingqi Zhao

DOI:

关键词: Nonparametric statisticsPublic health surveillanceStatistical learningComputer scienceData sciencePersonalized medicine

摘要:

参考文章(80)
Ingo Steinwart, Clint Scovel, Fast rates for support vector machines using Gaussian kernels Annals of Statistics. ,vol. 35, pp. 575- 607 ,(2007) , 10.1214/009053606000001226
Olivier Bousquet, Gilles Blanchard, Pascal Massart, Statistical Performance of Support Vector Machines Annals of Statistics. ,vol. 36, pp. 489- 531 ,(2008) , 10.1214/009053607000000839
James M. Robins, Optimal Structural Nested Models for Optimal Sequential Decisions Springer, New York, NY. pp. 189- 326 ,(2004) , 10.1007/978-1-4419-9076-1_11
Peter Diggle, A Kernel Method for Smoothing Point Process Data Applied Statistics. ,vol. 34, pp. 138- 147 ,(1985) , 10.2307/2347366
Anastasios A Tsiatis, Fred A. Wright, Zheng Ren, Michael R. Kosorok, Marie Davidian, Stephen L George, Richard M Goldberg, Research Methods for Clinical Trials in Personalized Medicine: A Systematic Review ,(2012)
Yuan Ming, Hui Zou, The F ∞ -norm support vector machine Statistica Sinica. ,vol. 18, pp. 379- 398 ,(2008)
Michael D Lewis, Julie A Pavlin, Jay L Mansfield, Sheilah O’Brien, Louis G Boomsma, Yevgeniy Elbert, Patrick W Kelley, Disease outbreak detection system using syndromic data in the greater Washington DC area. American Journal of Preventive Medicine. ,vol. 23, pp. 180- 186 ,(2002) , 10.1016/S0749-3797(02)00490-7
Jianqing Fan, Irène Gijbels, Local polynomial modelling and its applications ,(1994)
O. L. Mangasarian, Paul S. Bradley, Feature Selection via Concave Minimization and Support Vector Machines international conference on machine learning. pp. 82- 90 ,(1998)
STEPHEN B. THACKER, RUTH L. BERKELMAN, PUBLIC HEALTH SURVEILLANCE IN THE UNITED STATES Epidemiologic Reviews. ,vol. 10, pp. 164- 190 ,(1988) , 10.1093/OXFORDJOURNALS.EPIREV.A036021