Research Methods for Clinical Trials in Personalized Medicine: A Systematic Review

作者: Anastasios A Tsiatis , Fred A. Wright , Zheng Ren , Michael R. Kosorok , Marie Davidian

DOI:

关键词: Treatment strategyHybrid approachPersonalized medicineStatistical analysisFuture studiesNew englandClinical trialDiseaseMedicineMedical physics

摘要: Background: Personalized medicine, the notion that an individual’s genetic and other characteristics can be used to individualize diagnosis, treatment prevention of disease, is active exciting area research, with tremendous potential improve health society. Methods: Seventy-six studies using personalized medicine analysis techniques published from 2006 2010 in six high-impact journals Journal American Medical Association, National Cancer Institute, Lancet, Nature, Nature Medicine, New England Medicine were reviewed. Selected articles manually selected based on reporting use information stratify subjects analyses association between biomarkers patient clinical outcomes. Results: We found considerable variability limited consensus approaches. Approaches could largely classified as data-driven, seeking discovery through statistical data, or knowledge-driven, relying heavily prior biological information. Some took a hybrid approach. Eliminating two retracted after publication, 56 remaining 74 (76%) cancerrelated. Conclusions: Much work needed standardize methods for finding biomarkers, validating results, efficiently optimizing better individual strategies. Several promising new analytic approaches are available should considered future medicine.

参考文章(132)
Stephen L. George, Xiaofei Wang, Targeted Clinical Trials Designs for Clinical Trials. pp. 157- 177 ,(2012) , 10.1007/978-1-4614-0140-7_7
John Quackenbush, Computational analysis of microarray data Nature Reviews Genetics. ,vol. 2, pp. 418- 427 ,(2001) , 10.1038/35076576
S. S.-J. Lee, A. Mudaliar, Racing Forward: The Genomics and Personalized Medicine Act Science. ,vol. 323, pp. 342- 342 ,(2009) , 10.1126/SCIENCE.1165768
Stephen L. George, Statistical Issues in Translational Cancer Research Clinical Cancer Research. ,vol. 14, pp. 5954- 5958 ,(2008) , 10.1158/1078-0432.CCR-07-4537
T. Andrew Clayton, John C. Lindon, Olivier Cloarec, Henrik Antti, Claude Charuel, Gilles Hanton, Jean-Pierre Provost, Jean-Loïc Le Net, David Baker, Rosalind J. Walley, Jeremy R. Everett, Jeremy K. Nicholson, Pharmaco-metabonomic phenotyping and personalized drug treatment Nature. ,vol. 440, pp. 1073- 1077 ,(2006) , 10.1038/NATURE04648
John P. Overington, Bissan Al-Lazikani, Andrew L. Hopkins, How many drug targets are there Nature Reviews Drug Discovery. ,vol. 5, pp. 993- 996 ,(2006) , 10.1038/NRD2199
Guido Marcucci, Michael D. Radmacher, Kati Maharry, Krzysztof Mrózek, Amy S. Ruppert, Peter Paschka, Tamara Vukosavljevic, Susan P. Whitman, Claudia D. Baldus, Christian Langer, Chang-Gong Liu, Andrew J. Carroll, Bayard L. Powell, Ramiro Garzon, Carlo M. Croce, Jonathan E. Kolitz, Michael A. Caligiuri, Richard A. Larson, Clara D. Bloomfield, MicroRNA expression in cytogenetically normal acute myeloid leukemia The New England Journal of Medicine. ,vol. 358, pp. 1919- 1928 ,(2008) , 10.1056/NEJMOA074256
Gad Rennert, Shantih Bisland-Naggan, Ofra Barnett-Griness, Naomi Bar-Joseph, Shiyu Zhang, Hedy S. Rennert, Steven A. Narod, Clinical outcomes of breast cancer in carriers of BRCA1 and BRCA2 mutations. The New England Journal of Medicine. ,vol. 357, pp. 115- 123 ,(2007) , 10.1056/NEJMOA070608
Wendy De Roock, Derek J. Jonker, Federica Di Nicolantonio, Andrea Sartore-Bianchi, Dongsheng Tu, Salvatore Siena, Simona Lamba, Sabrina Arena, Milo Frattini, Hubert Piessevaux, Eric Van Cutsem, Chris J. O’Callaghan, Shirin Khambata-Ford, John R. Zalcberg, John Simes, Christos S. Karapetis, Alberto Bardelli, Sabine Tejpar, Association of KRAS p.G13D Mutation With Outcome in Patients With Chemotherapy-Refractory Metastatic Colorectal Cancer Treated With Cetuximab JAMA. ,vol. 304, pp. 1812- 1820 ,(2010) , 10.1001/JAMA.2010.1535
Kevin R. Coombes, Keith A. Baggerly, Deriving chemosensitivity from cell lines: Forensic bioinformatics and reproducible research in high-throughput biology The Annals of Applied Statistics. ,vol. 3, pp. 1309- 1334 ,(2009) , 10.1214/09-AOAS291