Deriving chemosensitivity from cell lines: Forensic bioinformatics and reproducible research in high-throughput biology

作者: Kevin R. Coombes , Keith A. Baggerly

DOI: 10.1214/09-AOAS291

关键词:

摘要: High-throughput biological assays such as microarrays let us ask very detailed questions about how diseases operate, and promise to personalize therapy. Data processing, however, is often not described well enough allow for exact reproduction of the results, leading exercises in “forensic bioinformatics” where aspects raw data reported results are used infer what methods must have been employed. Unfortunately, poor documentation can shift from an inconvenience active danger when it obscures just but errors. In this report, we examine several related papers purporting use microarray-based signatures drug sensitivity derived cell lines predict patient response. Patients clinical trials currently being allocated treatment arms on basis these results. However, show five case studies that incorporate simple errors may be putting patients at risk. One theme emerges most common (e.g., row or column offsets); conversely, our experience common. We then discuss steps taking avoid own investigations.

参考文章(26)
David N. Stivers, Jing Wang, Gary L. Rosner, Kevin R. Coombes, Organ-Specific Differences in Gene Expression and Unigene Annotations Describing Source Material Springer, Boston, MA. pp. 59- 72 ,(2004) , 10.1007/0-306-48354-8_5
Markus Ruschhaupt, Wolfgang Huber, Annemarie Poustka, Ulrich Mansmann, A Compendium to Ensure Computational Reproducibility in High-Dimensional Classification Tasks Statistical Applications in Genetics and Molecular Biology. ,vol. 3, pp. 1- 24 ,(2004) , 10.2202/1544-6115.1078
C. K. Augustine, J. S. Yoo, A. Potti, Y. Yoshimoto, P. A. Zipfel, H. S. Friedman, J. R. Nevins, F. Ali-Osman, D. S. Tyler, Genomic and Molecular Profiling Predicts Response to Temozolomide in Melanoma Clinical Cancer Research. ,vol. 15, pp. 502- 510 ,(2009) , 10.1158/1078-0432.CCR-08-1916
John P A Ioannidis, David B Allison, Catherine A Ball, Issa Coulibaly, Xiangqin Cui, Aedín C Culhane, Mario Falchi, Cesare Furlanello, Laurence Game, Giuseppe Jurman, Jon Mangion, Tapan Mehta, Michael Nitzberg, Grier P Page, Enrico Petretto, Vera van Noort, Repeatability of published microarray gene expression analyses. Nature Genetics. ,vol. 41, pp. 149- 155 ,(2009) , 10.1038/NG.295
Kevin R Coombes, Jing Wang, Keith A Baggerly, Microarrays: retracing steps. Nature Medicine. ,vol. 13, pp. 1276- 1277 ,(2007) , 10.1038/NM1107-1276B
Anil Potti, Joseph R Nevins, Reply to 'Microarrays: retracing steps' Nature Medicine. ,vol. 13, pp. 1277- 1278 ,(2007) , 10.1038/NM1107-1277
Balazs Györffy, Paweł Surowiak, Olaf Kiesslich, Carsten Denkert, Reinhold Schäfer, Manfred Dietel, Hermann Lage, Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. International Journal of Cancer. ,vol. 118, pp. 1699- 1712 ,(2006) , 10.1002/IJC.21570
Keith A. Baggerly, Kevin R. Coombes, E. Shannon Neeley, Run Batch Effects Potentially Compromise the Usefulness of Genomic Signatures for Ovarian Cancer Journal of Clinical Oncology. ,vol. 26, pp. 1186- 1187 ,(2008) , 10.1200/JCO.2007.15.1951
Sanne Lugthart, Meyling H. Cheok, Monique L. den Boer, Wenjian Yang, Amy Holleman, Cheng Cheng, Ching-Hon Pui, Mary V. Relling, Gritta E. Janka-Schaub, Rob Pieters, William E. Evans, Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia Cancer Cell. ,vol. 7, pp. 375- 386 ,(2005) , 10.1016/J.CCR.2005.03.002